On irrotational vector fields with vector lines located on a given surface
نویسندگان
چکیده
Рассматриваются безвихревые векторные поля на поверхности, заданной уравнением $a=z+\alpha(x,y,t)=0$. Изучаются условия, при выполнении которых линии таких полей располагаются этой поверхности. Получены достаточные условия существования гармонического векторного с такими векторными линиями. Изучена переопределенная система уравнений в частных производных, решение которой обеспечивает получение поля, которого лежат поверхности рассматриваемого вида. Выписано уравнение для можно найти гармоническое векторное поле линиями расположенными Показано, что любых поверхностей вида негармонические линиями, Приведен ряд поверхностей, указаны гармонические или этих поверхностях. Рассмотрена Навье - Стокса вязкой несжимаемой жидкости безразмерном виде. Для системы предположении потенциальности скоростей выписано частное решение, обеспечивающее расположение векторных параболоиде вращения. Irrotational vector fields are considered on the surface given by equation The conditions under which lines of such located this studied. Sufficient for existence a harmonic field with obtained. An overdetermined system partial differential equations is studied, solution provides field, lie type. written, it possible to find surface. It shown that any surfaces type consideration, one can irrotational nonharmonic A number or these Navier Stokes viscous incompressible fluid in nondimensional form considered. For system, assumption velocity potential, particular written ensures location paraboloid revolution.
منابع مشابه
construction of vector fields with positive lyapunov exponents
in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...
15 صفحه اولConcurrent vector fields on Finsler spaces
In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...
متن کاملSome vector fields on a riemannian manifold with semi-symmetric metric connection
In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.
متن کاملOvercoming the ill-posedness through discretization in vector tomography: Reconstruction of irrotational vector fields
Vector tomography methods intend to reconstruct and visualize vector fields in restricted domains by measuring line integrals of projections of these vector fields. Here, we deal with the reconstruction of irrotational vector functions from boundary measurements. As the majority of inverse problems, vector field recovery is an ill posed in the continuous domain and therefore further assumptions...
متن کاملVector Fields on Spheres
This paper presents a solution to the problem of finding the maximum number of linearly independent vector fields that can be placed on a sphere. To produce the correct upper bound, we make use of K-theory. After briefly recapitulating the basics of K-theory, we introduce Adams operations and compute the K-theory of the complex and real projective spaces. We then define the characteristic class...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ??????? ????????? ???????????????? ????????????
سال: 2022
ISSN: ['1998-5037']
DOI: https://doi.org/10.26456/vtpmk645