On Küchle varieties with Picard number greater than 1
نویسندگان
چکیده
منابع مشابه
Smooth projective horospherical varieties with Picard number 1
We describe smooth projective horospherical varieties with Picard number 1. Moreover we prove that the automorphism group of any such variety acts with at most two orbits and we give a geometric characterisation of non-homogeneous ones.
متن کاملOn some smooth projective two - orbits varieties with Picard number 1 Boris Pasquier
We classify all smooth projective horospherical varieties with Picard number 1. We prove that the automorphism group of any such variety X acts with at most two orbits and that this group still acts with only two orbits on X blown up at the closed orbit. We characterize all smooth projective two-orbits varieties with Picard number 1 that satisfy this latter property. Mathematics Subject Classif...
متن کاملOn some smooth projective two-orbit varieties with Picard number 1
We classify all smooth projective horospherical varieties with Picard number 1. We prove that the automorphism group of any such variety X acts with at most two orbits and that this group still acts with only two orbits on X blown up at the closed orbit. We characterize all smooth projective two-orbit varieties with Picard number 1 that satisfy this latter property. Mathematics Subject Classifi...
متن کاملSmooth Projective Symmetric Varieties with Picard Number One
We classify the smooth projective symmetric G-varieties with Picard number one (and G semisimple). Moreover we prove a criterion for the smoothness of the simple (normal) symmetric varieties whose closed orbit is complete. In particular we prove that, given a such variety X which is not exceptional, then X is smooth if and only if an appropriate toric variety contained in X is smooth. keywords:...
متن کاملQ-factorial Gorenstein Toric Fano Varieties with Large Picard Number
In dimension d, Q-factorial Gorenstein toric Fano varieties with Picard number ρX correspond to simplicial reflexive polytopes with ρX+d vertices. Casagrande showed that any d-dimensional simplicial reflexive polytope has at most 3d vertices, if d is even, respectively, 3d − 1, if d is odd. Moreover, for d even there is up to unimodular equivalence only one such polytope with 3d vertices, corre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Izvestiya: Mathematics
سال: 2015
ISSN: 1064-5632,1468-4810
DOI: 10.1070/im2015v079n04abeh002758