On nonlocal boundary value problem for the equation of motion of a homogeneous elastic beam with pinned-pinned ends

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Solution for Boundary Value Problem of Fractional Dierential Equation

In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.

متن کامل

Positive solution for boundary value problem of fractional dierential equation

In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.

متن کامل

Stability Analysis of Non-Local Euler-Bernoulli Beam with Exponentially Varying Cross-Section Resting on Winkler-Pasternak Foundation

In this paper, linear stability analysis of non-prismatic beam resting on uniform Winkler-Pasternak elastic foundation is carried out based on Eringen's non-local elasticity theory. In the context of small displacement, the governing differential equation and the related boundary conditions are obtained via the energy principle. It is also assumed that the width of rectangle cross-section varie...

متن کامل

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

Elastic theory of pinned flux lattices.

The pinning of flux lattices by weak impurity disorder is studied in the absence of free dislocations using both the gaussian variational method and, to O(ǫ = 4 − d), the functional renormalization group. We find universal logarithmic growth of displacements for 2 < d < 4: 〈u(x) − u(0)〉2 ∼ Ad log |x| and persistence of algebraic quasi-long range translational order. When the two methods can be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Carpathian Mathematical Publications

سال: 2018

ISSN: 2313-0210,2075-9827

DOI: 10.15330/cmp.10.1.105-113