On nonnegative solutions of random systems of linear inequalities

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Approximate Solutions of Systems of Linear Inequalities

(briefly, -4x^6), one arrives at a vector JC that "almost" satisfies (1). It is almost obvious geometrically that, if (1) is consistent, one can infer that there is a solution x0 of (1) "close" to x. The purpose of this report is to justify and formulate precisely this assertion. We shall use fairly general definitions of functions that measure the size of vectors, since it may be possible to o...

متن کامل

On Approximate Solutions of Systems of Linear Inequalities

Let ~x ~ b be a. consis tent system of linp,ar inequal ities. The principal result is a quantitative formulatIOn of the fa ct t hat if x "almost " sa t isfi es the inequalit ies t hen x is "close" to a solut ion. It is fur ther shown how i t is possible in certain cases to e~timate the $ize of the vector joining x to the nearest solu t ion from the magn itude of t he posit ive coordi nates of A...

متن کامل

Sparse Solutions to Nonnegative Linear Systems and Applications

We give an efficient algorithm for finding sparse approximate solutions to linear systems of equations with nonnegative coefficients. Unlike most known results for sparse recovery, we do not require any assumption on the matrix other than non-negativity. Our algorithm is combinatorial in nature, inspired by techniques for the set cover problem, as well as the multiplicative weight update method...

متن کامل

Basic solutions of systems with two max-linear inequalities

Article history: Available online 25 March 2011 Submitted by J.J. Loiseau AMS classification: 15A80 15A39 15A03

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 1987

ISSN: 0179-5376,1432-0444

DOI: 10.1007/bf02187872