On ordinal ranks of Baire class functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranks on the Baire Class Ξ Functions

In 1990 Kechris and Louveau developed the theory of three very natural ranks on the Baire class 1 functions. A rank is a function assigning countable ordinals to certain objects, typically measuring their complexity. We extend this theory to the case of Baire class ξ functions, and generalize most of the results from the Baire class 1 case. We also show that their assumption of the compactness ...

متن کامل

Functions Whose Composition with Baire Class One Functions Are Baire Class One

We study the functions whose composition with Baire class one functions are Baire class one functions. We first prove some characterizations of such functions, then investigate a subclass of such functions which are defined in a natural way.

متن کامل

Array Convergence of Functions of the Rst Baire-class

We show that every array (x(i; j) : 1 i < j < 1) of elements in a point-wise compact subset of the Baire-1 functions on a Polish space, whose iterated pointwise limit lim i lim j x(i; j) exists, is converging Ramsey-uniformly. An array (x(i; j) i<j) in a Hausdorr space T is said to converge Ramsey-uniformly to some x in T , if every subsequence of the positive integers has a further subsequence...

متن کامل

A New Characterization of Baire Class 1 Functions

We give a new characterization of the Baire class 1 functions (defined on an ultrametric space) by proving that they are exactly the pointwise limits of sequences of full functions, which are particularly simple Lipschitz functions. Moreover we highlight the link between the two classical stratifications of the Borel functions by showing that the Baire class functions of some level are exactly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 2019

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm616-3-2019