On orthocomplemented subspaces in p-adic Banach spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completely continuous endomorphisms of p-adic Banach spaces

In Dwork’s memoir [3] concerning the rationality of zeta functions, an essential role is played by the p-adic analytic function det(1− tu), where u is a certain infinite matrix. This analytic function is an entire function, exactly as in the classical Fredholm theory. It was natural to pursue this analogy and extend to u the spectral theory of F. Riesz; this is just what Dwork did ([4], §2). In...

متن کامل

A REINTERPRETATION OF EMERTON’S p-ADIC BANACH SPACES

It is shown that the p-adic Banach spaces introduced by Emerton, are isomorphic to the cohomology groups of the sheaf of continuous Qp-valued functions on a certain space. Some applications of this result are discussed.

متن کامل

P-adic Banach Spaces and Families of Modular Forms

Let p be a prime, Cp the completion of an algebraic closure of the p-adicnumbers Qp and K a finite extension of Qp contained in Cp. Let v be the valuation on Cp such that v(p) = 1 and let | | be the absolute value on Cp such that |x| = p for x ∈ Cp. Suppose N is a positive integer prime to p. Let X1(Np) denote the modular curve over K which represents elliptic curves with Γ1(Np)-structure and l...

متن کامل

Strongly Proximinal Subspaces in Banach Spaces

We give descriptions of SSDand QP -points in C(K)-spaces and use this to characterize strongly proximinal subspaces of finite codimension in L1(μ). We provide some natural class of examples of strongly proximinal subspaces which are not necessarily finite codimensional. We also study transitivity of strong proximinal subspaces of finite codimension.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2005

ISSN: 0019-3577

DOI: 10.1016/s0019-3577(05)80025-4