On Partitioning and Subtractive Subsemimodules of Semimodules over Semirings
نویسندگان
چکیده
منابع مشابه
Idempotent Subreducts of Semimodules over Commutative Semirings
A short proof of the characterization of idempotent subreducts of semimodules over commutative semirings is presented. It says that an idempotent algebra embeds into a semimodule over a commutative semiring, if and only if it belongs to the variety of Szendrei modes.
متن کاملFurther Galois Connections between Semimodules over Idempotent Semirings
In [14] a generalisation of Formal Concept Analysis was introduced with data mining applications in mind, K-Formal Concept Analysis, where incidences take values in certain kinds of semirings, instead of the standard Boolean carrier set. The construction leading to the pair of dually (order) isomorphic lattices can be further manipulated to obtain the three other types of Galois Connections pro...
متن کاملWeakly prime ternary subsemimodules of ternary semimodules
In this paper we introduce the concept of weakly prime ternary subsemimodules of a ternary semimodule over a ternary semiring and obtain some characterizations of weakly prime ternary subsemimodules. We prove that if $N$ is a weakly prime subtractive ternary subsemimodule of a ternary $R$-semimodule $M$, then either $N$ is a prime ternary subsemimodule or $(N : M)(N : M)N = 0$. If $N$ is a $Q$-...
متن کاملDuality and Separation Theorems in Idempotent Semimodules
We consider subsemimodules and convex subsets of semimodules over semirings with an idempotent addition. We introduce a nonlinear projection on subsemimodules: the projection of a point is the maximal approximation from below of the point in the subsemimodule. We use this projection to separate a point from a convex set. We also show that the projection minimizes the analogue of Hilbert’s proje...
متن کاملweakly prime ternary subsemimodules of ternary semimodules
in this paper we introduce the concept of weakly prime ternary subsemimodules of a ternary semimodule over a ternary semiring and obtain some characterizations of weakly prime ternary subsemimodules. we prove that if $n$ is a weakly prime subtractive ternary subsemimodule of a ternary $r$-semimodule $m$, then either $n$ is a prime ternary subsemimodule or $(n : m)(n : m)n = 0$. if $n$ is a $q$-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyungpook mathematical journal
سال: 2010
ISSN: 1225-6951
DOI: 10.5666/kmj.2010.50.2.329