On Partitioning and Subtractive Subsemimodules of Semimodules over Semirings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Idempotent Subreducts of Semimodules over Commutative Semirings

A short proof of the characterization of idempotent subreducts of semimodules over commutative semirings is presented. It says that an idempotent algebra embeds into a semimodule over a commutative semiring, if and only if it belongs to the variety of Szendrei modes.

متن کامل

Further Galois Connections between Semimodules over Idempotent Semirings

In [14] a generalisation of Formal Concept Analysis was introduced with data mining applications in mind, K-Formal Concept Analysis, where incidences take values in certain kinds of semirings, instead of the standard Boolean carrier set. The construction leading to the pair of dually (order) isomorphic lattices can be further manipulated to obtain the three other types of Galois Connections pro...

متن کامل

Weakly prime ternary subsemimodules of ternary semimodules

In this paper we introduce the concept of weakly prime ternary subsemimodules of a ternary semimodule over a ternary semiring and obtain some characterizations of weakly prime ternary subsemimodules. We prove that if $N$ is a weakly prime subtractive ternary subsemimodule of a ternary $R$-semimodule $M$, then either $N$ is a prime ternary subsemimodule or $(N : M)(N : M)N = 0$. If $N$ is a $Q$-...

متن کامل

Duality and Separation Theorems in Idempotent Semimodules

We consider subsemimodules and convex subsets of semimodules over semirings with an idempotent addition. We introduce a nonlinear projection on subsemimodules: the projection of a point is the maximal approximation from below of the point in the subsemimodule. We use this projection to separate a point from a convex set. We also show that the projection minimizes the analogue of Hilbert’s proje...

متن کامل

weakly prime ternary subsemimodules of ternary semimodules

in this paper we introduce the concept of weakly prime ternary subsemimodules of a ternary semimodule over a ternary semiring and obtain some characterizations of weakly prime ternary subsemimodules. we prove that if $n$ is a weakly prime subtractive ternary subsemimodule of a ternary $r$-semimodule $m$, then either $n$ is a prime ternary subsemimodule or $(n : m)(n : m)n = 0$. if $n$ is a $q$-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyungpook mathematical journal

سال: 2010

ISSN: 1225-6951

DOI: 10.5666/kmj.2010.50.2.329