On perfect powers that are sums of cubes of a seven term arithmetic progression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Powers That Are Sums of Consecutive Cubes

Euler noted the relation 63= 33+43+53 and asked for other instances of cubes that are sums of consecutive cubes. Similar problems have been studied by Cunningham, Catalan, Gennochi, Lucas, Pagliani, Cassels, Uchiyama, Stroeker and Zhongfeng Zhang. In particular, Stroeker determined all squares that can be written as a sum of at most 50 consecutive cubes. We generalize Stroeker’s work by determi...

متن کامل

Perfect powers in arithmetic progression 1 PERFECT POWERS IN ARITHMETIC PROGRESSION. A NOTE ON THE INHOMOGENEOUS CASE

We show that the abc conjecture implies that the number of terms of any arithmetic progression consisting of almost perfect ”inhomogeneous” powers is bounded, moreover, if the exponents of the powers are all ≥ 4, then the number of such progressions is finite. We derive a similar statement unconditionally, provided that the exponents of the terms in the progression are bounded from above.

متن کامل

On sums of seven cubes

We show that every integer between 1290741 and 3.375× 1012 is a sum of 5 nonnegative cubes, from which we deduce that every integer which is a cubic residue modulo 9 and an invertible cubic residue modulo 37 is a sum of 7 nonnegative cubes.

متن کامل

Perfect Powers Expressible as Sums of Two Cubes

Let n ≥ 3. This paper is concerned with the equation a3 + b3 = cn, which we attack using a combination of the modular approach (via Frey curves and Galois representations) with obstructions to the solutions that are of Brauer–Manin type. We shall show that there are no solutions in coprime, non-zero integers a, b, c, for a set of prime exponents n having Dirichlet density 28219 44928 ≈ 0.628, a...

متن کامل

On powers that are sums of consecutive like powers

1 Background The problem of cubes that are sums of consecutive cubes goes back to Euler ([10] art. 249) who noted the remarkable relation 33 + 43 + 53 = 63. Similar problems were considered by several mathematicians during the nineteenth and early twentieth century as surveyed in Dickson’sHistory of the Theory of Numbers ([7] p. 582–588). These questions are still of interest today. For example...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2020

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2020.04.020