On permutations with bounded drop size

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Descent polynomials for permutations with bounded drop size

Motivated by juggling sequences and bubble sort, we examine permutations on the set {1, 2, . . . , n} with d descents and maximum drop size k. We give explicit formulas for enumerating such permutations for given integers k and d. We also derive the related generating functions and prove unimodality and symmetry of the coefficients. Résumé. Motivés par les “suites de jonglerie” et le tri à bull...

متن کامل

Geometric permutations of balls with bounded size disparity

We study combinatorial bounds for geometric permutations of balls with bounded size disparity in d-space. Our main contribution is the following theorem: given a set S of n disjoint balls in R , if n is sufficiently large and the radius ratio between the largest and smallest balls of S is γ , then the maximum number of geometric permutations of S is O(γ logγ ). When d = 2, we are able to prove ...

متن کامل

Tight bounds on the maximum size of a set of permutations with bounded VC-dimension

The VC-dimension of a family P of n-permutations is the largest integer k such that the set of restrictions of the permutations in P on some k-tuple of positions is the set of all k! permutation patterns. Let rk(n) be the maximum size of a set of n-permutations with VCdimension k. Raz showed that r2(n) grows exponentially in n. We show that r3(n) = 2 Θ(n logα(n)) and for every t ≥ 1, we have r2...

متن کامل

Polynomial permutations on bounded commutative directoids with an antitone involution

Main results of Dorninger and Länger (J Pure Appl Math 40:441–449, 2007) concerning polynomial permutations on bounded lattices with an antitone involution are generalized to the case of bounded commutative directoids.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2016

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2015.12.008