On pointwise convergence estimates for positive linear operators on C[a, b]

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On pointwise estimates involving sparse operators

We obtain an alternative approach to recent results by M. Lacey and Hytönen–Roncal–Tapiola about a pointwise domination of ω-Calderón–Zygmund operators by sparse operators. This approach is rather elementary and it also works for a class of nonintegral singular operators.

متن کامل

On Pointwise Estimates for the Littlewood-paley Operators

In a recent paper we proved pointwise estimates relating some classical maximal and singular integral operators. Here we show that inequalities essentially of the same type hold for the Littlewood-Paley operators.

متن کامل

On pointwise estimates of positive definite functions with given support

The following problem originated from a question due to Paul Turán. Suppose Ω is a convex body in Euclidean space R or in T, which is symmetric about the origin. Over all positive definite functions supported in Ω, and with normalized value 1 at the origin, what is the largest possible value of their integral? From this Arestov, Berdysheva and Berens arrived to pose the analogous pointwise extr...

متن کامل

On convergence rate estimates for approximations of solution operators for linear non-autonomous evolution equations

H. Neidhardt, A. Stephan, V. A. Zagrebnov WIAS Berlin, Mohrenstr. 39, D-10117 Berlin, Germany Humboldt Universität zu Berlin, Institut für Mathematik Unter den Linden 6, D-10099 Berlin, Germany Université d’Aix-Marseille and Institut de Mathématiques de Marseille (I2M) UMR 7373, CMI – Technopôle Château-Gombert, 13453 Marseille, France [email protected], [email protected], ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae (Proceedings)

سال: 1976

ISSN: 1385-7258

DOI: 10.1016/1385-7258(76)90044-5