On Practical Choice of Smoothing Parameter in Nonparametric Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bandwidth Choice for Nonparametric Classification

It is shown that, for kernel-based classification with univariate distributions and two populations, optimal bandwidth choice has a dichotomous character. If the two densities cross at just one point, where their curvatures have the same signs, then minimum Bayes risk is achieved using bandwidths which are an order of magnitude larger than those which minimize pointwise estimation error. On the...

متن کامل

Model Indexing and Smoothing Parameter Selection in Nonparametric Function Estimation

Smoothing parameter selection is among the most intensively studied subjects in nonpara-metric function estimation. A closely related issue, that of identifying a proper index for the smoothing parameter, is however largely neglected in the existing literature. Through heuris-tic arguments and simple simulations, we shall illustrate that most current working indices are conceptually \incorrect"...

متن کامل

Nonparametric regression for functional data: automatic smoothing parameter selection

We study regression estimation when the explanatory variable is functional. Nonparametric estimates of the regression operator have been recently introduced. They depend on a smoothing factor which controls its behavior, and the aim of our work is to construct some data-driven criterion for choosing this smoothing parameter. The criterion can be formulated in terms of a functional version of cr...

متن کامل

Generalized Nonparametric Mixed-Effect Models: Computation and Smoothing Parameter Selection

Generalized linear mixed-effect models are widely used for the analysis of correlated nonGaussian data such as those found in longitudinal studies. In this article, we consider extensions with nonparametric fixed effects and parametric random effects. The estimation is through the penalized likelihood method, and our focus is on the efficient computation and the effective smoothing parameter se...

متن کامل

Gradient Based Smoothing Parameter Selection for Nonparametric Regression Estimation*

Data-driven bandwidth selection based on the gradient of an unknown regression function is considered. Uncovering gradients nonparametrically is of crucial importance across a broad range of economic environments such as determining risk premium or recovering distributions of individual preferences. The procedure developed here is shown to deliver bandwidths which have the optimal rate of conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications for Statistical Applications and Methods

سال: 2008

ISSN: 2287-7843

DOI: 10.5351/ckss.2008.15.2.283