On quaternionic complexes over unimodular quaternionic manifolds

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

almost-quaternionic Hermitian manifolds

In this note we prove that if the fundamental 4-form of an almost-quaternionic Hermitian manifold (M,Q, g) of dimension 4n ≥ 8 satisfies the conformal-Killing equation, then (M,Q, g) is quaternionic-Kähler.

متن کامل

Estimating the eigenvalues on Quaternionic Kähler Manifolds

We study geometric first order differential operators on quaternionic Kähler manifolds. Their principal symbols are related to the enveloping algebra and Casimir elements for Sp(1)Sp(n). This observation leads to anti-symmetry of the principal symbols and BochnerWeitzenböck formulas for operators. As an application, we estimate the first eigenvalues of them.

متن کامل

Harmonic space and quaternionic manifolds

We find a principle of harmonic analyticity underlying the quaternionic (quaternionKähler) geometry and solve the differential constraints which define this geometry. To this end the original 4n-dimensional quaternionic manifold is extended to a biharmonic space. The latter includes additional harmonic coordinates associated with both the tangent local Sp(1) group and an extra rigid SU(2) group...

متن کامل

Institute for Mathematical Physics Hypercomplex Structures Associated to Quaternionic Manifolds Hypercomplex Structures Associated to Quaternionic Manifolds

If M is a quaternionic manifold and P is an S 1-instanton over M , then Joyce constructed a hypercomplex manifold we call P (M) over M. These hypercomplex manifolds admit a U(2)-action of a special type permuting the complex structures. We show that up to double covers, all such hypercomplex manifolds arise in this way. Examples, including that of a hypercomplex structure on SU(3), show the nec...

متن کامل

Fano Manifolds, Contact Structures, and Quaternionic Geometry

Let Z be a compact complex (2n+1)-manifold which carries a complex contact structure, meaning a codimension-1 holomorphic sub-bundle D ⊂ TZ which is maximally non-integrable. If Z admits a Kähler-Einstein metric of positive scalar curvature, we show that it is the Salamon twistor space of a quaternion-Kähler manifold (M, g). If Z also admits a second complex contact structure D̃ 6= D, then Z = C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2018

ISSN: 0926-2245

DOI: 10.1016/j.difgeo.2018.02.002