On Ramanujan's cubic continued fraction as a modular function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Crank Analog on a Certain Kind of Partition Function Arising from the Cubic Continued Fraction

In a series of papers, H.-C. Chan has studied congruence properties of a certain kind of partition function that arises from Ramanujan’s cubic continued fraction. This partition function a(n), is defined by ∑∞ n=0 a(n)q n = 1 (q;q)∞(q2;q2)∞ . In particular, he proved that a(3n + 2) ≡ 0 (mod 3). As Chan mentioned in his paper, it is natural to ask if there exists an analog of the rank or the cra...

متن کامل

Ramanujan’s Cubic Continued Fraction and Ramanujan Type Congruences for a Certain Partition Function

In this paper, we study the divisibility of the function a(n) defined by ∑ n≥0 a(n)q n := (q; q)−1 ∞ (q ; q2)−1 ∞ . In particular, we prove certain “Ramanujan type congruences” for a(n) modulo powers of 3.

متن کامل

Continued Fraction as a Discrete Nonlinear Transform

The connection between a Taylor series and a continued-fraction involves a nonlinear relation between the Taylor coefficients {an} and the continued-fraction coefficients {bn}. In many instances it turns out that this nonlinear relation transforms a complicated sequence {an} into a very simple one {bn}. We illustrate this simplification in the context of graph combinatorics. PACS numbers: 02.90...

متن کامل

A q-CONTINUED FRACTION

Let a, b, c, d be complex numbers with d 6= 0 and |q| < 1. Define H1(a, b, c, d, q) := 1 1 + −abq + c (a + b)q + d + · · · + −abq + cq (a + b)qn+1 + d + · · · . We show that H1(a, b, c, d, q) converges and 1 H1(a, b, c, d, q) − 1 = c − abq d + aq P∞ j=0 (b/d)(−c/bd)j q (q)j(−aq/d)j P∞ j=0 (b/d)(−c/bd)j q (q)j(−aq/d)j . We then use this result to deduce various corollaries, including the followi...

متن کامل

A Specialised Continued Fraction

We display a number with a surprising continued fraction expansion and show that we may explain that expansion as a specialisation of the continued fraction expansion of a formal series: A series ∑ chX −h has a continued fraction expansion with partial quotients polynomials in X of positive degree (other, perhaps than the 0-th partial quotient). Simple arguments, let alone examples, demonstrate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 2010

ISSN: 0040-8735

DOI: 10.2748/tmj/1294170348