On random orthogonal polynomials
نویسندگان
چکیده
منابع مشابه
On Classifications of Random Polynomials
Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...
متن کاملRandom block matrices and matrix orthogonal polynomials
In this paper we consider random block matrices, which generalize the general beta ensembles, which were recently investigated by Dumitriu and Edelmann (2002, 2005). We demonstrate that the eigenvalues of these random matrices can be uniformly approximated by roots of matrix orthogonal polynomials which were investigated independently from the random matrix literature. As a consequence we deriv...
متن کاملAnalysis of Random Walks Using Orthogonal Polynomials
We discuss some aspects of discrete-time birth-death processes or random walks, highlighting the role played by orthogonal polynomials.
متن کاملOn Orthogonal Matrix Polynomials
In this paper we deal with orthogonal matrix polynomials. First of all, we establish some basic notations and results we need later. A matrix polynomial P is a matrix whose entries are polynomials, or, equivalently, a combination P(t) = A 0 +A 1 t+ +A n t n , where A 0 ; ; A n are numerical matrices (the size of all the matrices which appear in this paper is N N). A positive deenite matrix of m...
متن کاملOn Co-recursive Orthogonal Polynomials
is equivalent to (1.1) with 6„ = 0 (w^2) and Pi(0)p^0. The condition b„ = 0 (w^2) suggests the symmetric case, (i.e.,P„( — x) = ( —l)"P„(x)) but this is denied by the condition Pi(0) ^0. (In fact, (1.2) shows that Pn( — r)^0 whenever Pn(r)=0.) It then seems natural to ask what relations exist between a set of polynomials satisfying (1.2) and the corresponding symmetric polynomials which would b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Stochastic Analysis
سال: 2001
ISSN: 1048-9533,1687-2177
DOI: 10.1155/s1048953301000223