On solution-free sets of integers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumerating solution-free sets in the integers

Given a linear equation L, a set A ⊆ [n] is L-free if A does not contain any ‘non-trivial’ solutions to L. In this paper we consider the following three general questions: (i) What is the size of the largest L-free subset of [n]? (ii) How many L-free subsets of [n] are there? (iii) How many maximal L-free subsets of [n] are there? We completely resolve (i) in the case when L is the equation px ...

متن کامل

A Note on Solution-free Sets of Integers

Given a linear equation L, a set A ⊆ [n] is L-free if A does not contain any ‘non-trivial’ solutions to L. We determine the precise size of the largest L-free subset of [n] for several general classes of linear equations L of the form px+ qy = rz for fixed p, q, r ∈ N where p ≥ q ≥ r. Further, for all such linear equations L, we give an upper bound on the number of maximal L-free subsets of [n]...

متن کامل

Sum-free Sets of Integers

A set S of integers is said to be sum-free if a, b e 5 implies a + b 6 S. In this paper, we investigate two new problems on sum-free sets: (1) Let f(k) denote the largest positive integer for which there exists a partition of (1, 2,... ,f(k)) into k sum-free sets, and let h(k) denote the largest positive integer for which there exists a partition of {1, 2, . . . , h(k)) into k sets which are su...

متن کامل

On the complexity of finding and counting solution-free sets of integers

Given a linear equation L, a set A of integers is L-free if A does not contain any ‘nontrivial’ solutions to L. This notion incorporates many central topics in combinatorial number theory such as sum-free and progression-free sets. In this paper we initiate the study of (parameterised) complexity questions involving L-free sets of integers. The main questions we consider involve deciding whethe...

متن کامل

On smooth sets of integers

This work studies evenly distributed sets of integers — sets whose quantity within each interval is proportional to the size of the interval, up to a bounded additive deviation. Namely, for ρ,∆ ∈ R a set A of integers is (ρ,∆)-smooth if abs(|I| · ρ − |I ∩ A|) < ∆ for any interval I of integers; a set A is ∆-smooth if it is (ρ,∆)-smooth for some real number ρ. The paper introduces the concept of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2017

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2017.06.018