On solvability of boundary value problem for elliptic equations with Bitsadze-Samarskiĭ condition

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bitsadze-Samarskii type nonlocal boundary value problems for elliptic differential and difference equations: Well-posedness

Keywords: Elliptic equations Nonlocal boundary value problems Difference schemes Stability a b s t r a c t The well-posedness of the Bitsadze–Samarskii type nonlocal boundary value problem in Hölder spaces with a weight is established. The coercivity inequalities for the solution of the nonlocal boundary value problem for elliptic equations are obtained. The stable second order of accuracy diff...

متن کامل

On boundary value problem for fractional differential equations

In this paper‎, ‎we study the existence of solutions for a‎ ‎ fractional boundary value problem‎. ‎By using critical point theory‎ ‎ and variational methods‎, ‎we give some new criteria to guarantee‎ ‎ that‎ ‎ the problems have at least one solution and infinitely many solutions.

متن کامل

Analytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations

In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...

متن کامل

An Inverse Boundary-value Problem for Semilinear Elliptic Equations

We show that in dimension two or greater, a certain equivalence class of the scalar coefficient a(x, u) of the semilinear elliptic equation ∆u + a(x, u) = 0 is uniquely determined by the Dirichlet to Neumann map of the equation on a bounded domain with smooth boundary. We also show that the coefficient a(x, u) can be determined by the Dirichlet to Neumann map under some additional hypotheses.

متن کامل

On the Solvability of Semilinear Operator Equations and Elliptic Boundary Value Problems

Let L be a bounded linear Fredholm mapping of index zero, mapping a Banach space X into a Banach space 7. Then necessary and sufficient conditions for the solvability of the operator equation Lu = ƒ for ƒ e Y are well known. However the same satisfactory state of affairs does not hold for semilinear operator equations in which a compact nonlinear operator Nu is added to the right hand side of L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 1988

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171288000158