On some constants for oscillation and stability of delay equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Some Oscillation Criteria For First Order Delay Dynamic Equations
We present an oscillation criterion for first order delay dynamic equations on time scales, which contains well-known criteria for delay differential equations and delay difference equations as special cases. We illustrate our results by applying them to various kinds of time scales.
متن کاملSome oscillation results for second-order nonlinear delay dynamic equations
We obtain some oscillation theorems for linear delay dynamic equations on a time scale. We illustrate the results by a number of examples. 1. Preliminary Results Consider the second order linear delay dynamic equation (1.1) L[x](t) := (r(t)x(t)) + n ∑ i=1 qi(t)x(τi(t)) = 0. We will be interested in obtaining oscillation theorems for (1.1) by comparing the solutions to a related equation without...
متن کاملOn stability of some linear and nonlinear delay differential equations
New explicit conditions of exponential stability are obtained for the nonautonomous equation with several delays ẏ(t)+ l ∑ k=1 ak(t)y ( hk(t) ) = 0 by the following method: several delays in the left-hand side are chosen and the solution is estimated using an auxiliary ordinary differential equation ẏ(t)+ ∑ k∈I ak(t)y(t)= 0, where I ∈ {1,2, . . . , l} is the chosen set of indices. These results...
متن کاملOscillation Criteria for Delay Equations
This paper is concerned with the oscillatory behavior of first-order delay differential equations of the form x′(t) + p(t)x(τ(t)) = 0, t ≥ t0, (1) where p, τ ∈ C([t0,∞),R),R = [0,∞), τ(t) is non-decreasing, τ(t) < t for t ≥ t0 and limt→∞ τ(t) =∞. Let the numbers k and L be defined by
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2011
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2011-10820-7