On some one-parameter families of three-body problems in one dimension: Exchange operator formalism in polar coordinates and scattering properties

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On some one-parameter families of three-body problems in one dimension: Exchange operator formalism in polar coordinates and scattering properties

We apply the exchange operator formalism in polar coordinates to a one-parameter family of three-body problems in one dimension and prove the integrability of the model both with and without the oscillator potential. We also present exact scattering solution of a new family of three-body problems in one dimension. PACS: 03.65.-w, 03.65.Ge, 03.65.Fd

متن کامل

Exact Solution of a Class of Three-Body Scattering Problems in One Dimension

We present an exact solution of the three-body scattering problem for a one parameter family of one dimensional potentials containing the Calogero and Wolfes potentials as special limiting cases. The result is an interesting nontrivial relationship between the final momenta pi and the initial momenta pi of the three particles. We also discuss another one parameter family of potentials for all o...

متن کامل

Some Problems in One-operator Scheduling

In this paper, we discuss a class of problems that arises in an m-machine ow-shop operated by a single operator.

متن کامل

Three-Body Dynamics in One Dimension

We discuss the general three-particle quantum scattering problem, for motion restricted to the full line. Specifically, we formulate the three-body problem in one dimension in terms of the (Faddeev-type) integral equation approach. As a first application, we develop a spinless, one-dimensional (1-D) model that mimics three-nucleon dynamics in one dimension. In addition, we investigate the effec...

متن کامل

Bounds on Scattering Poles in One Dimension

For the class of super-exponentially decaying potentials on the real line sharp upper bounds on the counting function of the poles in discs are derived and the density of the poles in strips is estimated. In the case of nonnegative potentials, explicit estimates for the width of a pole-free strip are obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters A

سال: 1998

ISSN: 0375-9601

DOI: 10.1016/s0375-9601(98)00752-x