On sparse approximations to randomized strategies and convex combinations
نویسندگان
چکیده
منابع مشابه
Convex Sets and Convex Combinations
Convexity is one of the most important concepts in a study of analysis. Especially, it has been applied around the optimization problem widely. Our purpose is to define the concept of convexity of a set on Mizar, and to develop the generalities of convex analysis. The construction of this article is as follows: Convexity of the set is defined in the section 1. The section 2 gives the definition...
متن کاملConvex Sets and Convex Combinations on Complex Linear Spaces
Let V be a non empty zero structure. An element of Cthe carrier of V is said to be a C-linear combination of V if: (Def. 1) There exists a finite subset T of V such that for every element v of V such that v / ∈ T holds it(v) = 0. Let V be a non empty additive loop structure and let L be an element of Cthe carrier of V . The support of L yielding a subset of V is defined by: (Def. 2) The support...
متن کاملon the relationship between self- regulated learning strategies use and willingness to communicate in the context of writing
این تحقیق به منظور بررسی رابطه بین میزان استراتژیهای خود-تنظیم شده یادگیری و تمایل به ایجاد ارتباط دانشجویان زبان انگلیسی انجام شده است.علاوه بر این،روابط و کنش های موجود بین ریزسنجه های استراتژیهای خود-تنظیم شده یادگُیری ، مهارت نگارش و تمایل به برقراری ارتباط و همچنین تاٍثیرجنسیت دانشجویان زبان انگلیسی در استراتژیهای خود-تنظیم شده یادگیری و تمایل به برقراری ارتباط آنها مورد بررسی قرار گرفته شد.
15 صفحه اولConvex Hull, Set of Convex Combinations and Convex Cone
Let V be a real linear space. The functor ConvexComb(V ) yielding a set is defined by: (Def. 1) For every set L holds L ∈ ConvexComb(V ) iff L is a convex combination of V . Let V be a real linear space and let M be a non empty subset of V . The functor ConvexComb(M) yielding a set is defined as follows: (Def. 2) For every set L holds L ∈ ConvexComb(M) iff L is a convex combination of M . We no...
متن کاملApproximations of differentiable convex functions on arbitrary convex polytopes
Let Xn := {xi}ni=0 be a given set of (n + 1) pairwise distinct points in R (called nodes or sample points), let P = conv(Xn), let f be a convex function with Lipschitz continuous gradient on P and λ := {λi}ni=0 be a set of barycentric coordinates with respect to the point set Xn. We analyze the error estimate between f and its barycentric approximation:
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1994
ISSN: 0024-3795
DOI: 10.1016/0024-3795(94)90357-3