On Stratonovich and Skorohod stochastic calculus for Gaussian processes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Malliavin Calculus and Skorohod Integration for Quantum Stochastic Processes

A derivation operator and a divergence operator are defined on the algebra of bounded operators on the symmetric Fock space over the complexification of a real Hilbert space h and it is shown that they satisfy similar properties as the derivation and divergence operator on the Wiener space over h. The derivation operator is then used to give sufficient conditions for the existence of smooth Wig...

متن کامل

Itô and Stratonovich Stochastic Calculus

We provide a detailed hands-on tutorial for the R Development Core Team [2014] add-on package Sim.DiffProc [Guidoum and Boukhetala, 2014], for symbolic and floating point computations in stochastic calculus and stochastic differential equations (SDEs). The package implement is introduced and it is explains how to use the snssde1d, snssde2d and snssde3d main functions in this package, for simula...

متن کامل

Quantum Stratonovich Stochastic Calculus and the Quantum Wong-Zakai Theorem

We introduce the Stratonovich version of quantum stochastic calculus including integrals with respect to emission (creation), absorption (annihilation) and scattering (conservation) processes. The calculus allows us to consider the limit of regular open dynamical systems as a quantum Wong-Zakai approximation theorem. We introduce distinct definitions of Itô Dyson and Stratonovich Dyson time-ord...

متن کامل

Stochastic Calculus for Dirichlet Processes

Using time-reversal, we introduce the stochastic integration for zero-energy additive functionals of symmetric Markov processes, which extends an early work of S. Nakao. Various properties of such stochastic integrals are discussed and an Itô formula for Dirichlet processes is obtained. AMS 2000 Mathematics Subject Classification: Primary 31C25; Secondary 60J57, 60J55, 60H05.

متن کامل

On the interpretation of Stratonovich calculus

The Itô–Stratonovich dilemma is revisited from the perspective of the interpretation of Stratonovich calculus using shot noise. Over the long time scales of the displacement of an observable, the principal issue is how to deal with finite/ zero autocorrelation of the stochastic noise. The former (non-zero) noise autocorrelation structure preserves the normal chain rule using a mid-point selecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2013

ISSN: 0091-1798

DOI: 10.1214/12-aop751