On Strongly Exposing Functionals
نویسندگان
چکیده
منابع مشابه
On Strongly Exposing Functionals
Let X be a real Banach space and let K be a bounded closed convex subset of X. We prove that the set of strongly exposing functions K" of K is a (norm) dense G, in X* if and only if for any bounded closed convex subset C such that Kit C, there exists a point x in K which is a strongly exposed point of conv (C U K). As an application, we show that if X* is weakly compact generated, then for any ...
متن کاملON STRONGLY ASSOCIATIVE HYPERRINGS
This paper generalizes the idea of strongly associative hyperoperation introduced in [7] to the class of hyperrings. We introduce and investigate hyperrings of type 1, type 2 and SDIS. Moreover, we study some examples of these hyperrings and give a new kind of hyperrings called totally hyperrings. Totally hyperrings give us a characterization of Krasner hyperrings. Also, we investigate these ...
متن کاملOn strongly dense submodules
The submodules with the property of the title ( a submodule $N$ of an $R$-module $M$ is called strongly dense in $M$, denoted by $Nleq_{sd}M$, if for any index set $I$, $prod _{I}Nleq_{d}prod _{I}M$) are introduced and fully investigated. It is shown that for each submodule $N$ of $M$ there exists the smallest subset $D'subseteq M$ such that $N+D'$ is a strongly dense submodule of $M$ and $D'bi...
متن کاملOn Strongly $H_{v}$-groups
The largest class of hyperstructures is the one which satisfies the weak properties; these are called $H_{v}$-structures. In this paper we introduce a special product of elements in $H_{v}$-group $H$ and define a new class of $H_{v}$-groups called strongly $H_{v}$-groups. Then we show that in strongly $H_{v}$-groups $beta=beta^{ast}$. Also we express $theta$-hyperoperation and investigat...
متن کاملA New Cohomology for the Morse Theory of Strongly Indefinite Functionals on Hilbert Spaces
Take a C function f :M → R on a complete Hilbert manifold which satisfies the Palais–Smale condition. Assume that it is a Morse function, meaning that the second order differential df(x) is non-degenerate at every critical point x. Recall that the Morse index m(x, f) of a critical point x is the dimension of the maximal subspace on which df(x) is negative definite. Then the basic result of Mors...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1978
ISSN: 0002-9939
DOI: 10.2307/2043185