On surfaces with common pseudo null geodesic in Minkowski 3-space
نویسندگان
چکیده
منابع مشابه
Generalized Null 2-Type Surfaces in Minkowski 3-Space
For the mean curvature vector field H and the Laplace operator ∆ of a submanifold in the Minkowski space, a submanifold satisfying the condition ∆H = f H + gC is known as a generalized null 2-type, where f and g are smooth functions, and C is a constant vector. The notion of generalized null 2-type submanifolds is a generalization of null 2-type submanifolds defined by B.-Y. Chen. In this paper...
متن کاملRuled W - Surfaces in Minkowski 3 - Space
In this paper, we study a spacelike (timelike) ruled W-surface in Minkowski 3-space which satisfies nontrivial relation between elements of the set {K, KII , H, HII}, where (K,H) and (KII , HII) are the Gaussian and mean curvatures of the first and second fundamental forms, respectively. Finally, some examples are constructed and plotted.
متن کاملOn Razzaboni Transformation of Surfaces in Minkowski 3-Space
In this paper, we investigate the surfaces generated by binormal motion of Bertrand curves, which is called Razzaboni surface, in Minkowski 3-space. We discussed the geometric properties of these surfaces in M according to the character of Bertrand geodesics. Then, we define the Razzaboni transformation for a given Razzaboni surface. In other words, we prove that there exists a dual of Razzabon...
متن کاملA Note on Parametric Surfaces in Minkowski 3-Space
With the help of the Frenet frame of a given pseudo null curve, a family of parametric surfaces is expressed as a linear combination of this frame. The necessary and sufficient conditions are examined for that curve to be an isoparametric and asymptotic on the parametric surface. It is shown that there is not any cylindrical and developable ruled surface as a parametric surface. Also, some inte...
متن کاملk−type partially null and pseudo null slant helices in Minkowski 4-space
We introduce the notion of a k-type slant helix in Minkowski space E1. For partially null and pseudo null curves in E1, we express some characterizations in terms of their curvature and torsion functions. AMS subject classifications: 53C40, 53C50
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
سال: 2017
ISSN: 1303-5991
DOI: 10.1501/commua1_0000000792