On symmetric spaces
نویسندگان
چکیده
منابع مشابه
Generalized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملObservability on Noncompact Symmetric Spaces
The \classical case" is the case in which X is a compact riemannian manifold and D is the (positive de nite) Laplacian. Then (1.1) is the heat equation on X . In this paper we'll look at the special case where X is a riemannian symmetric space of noncompact type. Thus X is a noncompact riemannian manifold with a very large symmetry group G, harmonic analysis on X is understood in terms of the s...
متن کاملL–distributions on symmetric spaces
The notion of Lp–distributions is introduced on Riemannian symmetric spaces of noncompact type and their main properties are established. We use a geometric description for the topology of the space of test functions in terms of the Laplace–Beltrami operator. The techniques are based on a-priori estimates for elliptic operators. We show that structure theorems, similar to Rn, hold on symmetric ...
متن کاملLecture Notes on Symmetric Spaces
1. Definition and Examples (p.2) 2. Transvections and Holonomy (p.7) 3. Killing Fields (p.9) 4. Cartan Involution and Cartan Decomposition (p.11) 5. Locally Symmetric Spaces (p.15) 6. Compact, Noncompact and Euclidean Type; Duality (p.16) 7. The Isometry Group (p.17) 8. Lie Subtriples and Totally Geodesic Subspaces (p.19) 9. Isotropy Representation and Rank (p.19) 10. The Weyl Group (p. 22) Ref...
متن کاملOn Asymptotically Symmetric Banach Spaces
A Banach space X is asymptotically symmetric (a.s.) if for some C <∞, for all m ∈ N, for all bounded sequences (xj)j=1 ⊆ X, 1 ≤ i ≤ m, for all permutations σ of {1, . . . ,m} and all ultrafilters U1, . . . ,Um on N, lim n1,U1 . . . lim nm,Um ∥∥∥∥ m ∑ i=1 xini ∥∥∥∥ ≤ C lim nσ(1),Uσ(1) . . . lim nσ(m),Uσ(m) ∥∥∥∥ m ∑
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1973
ISSN: 0386-2194
DOI: 10.3792/pja/1195519432