On the chromatic number of random regular graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Chromatic Number of Random Regular Graphs

Given any integer d ≥ 3, let k be the smallest integer such that d < 2k log k. We prove that with high probability the chromatic number of a random d-regular graph is k, k + 1, or k + 2.

متن کامل

On the chromatic number of random regular graphs

In this work we show that, for any fixed d, random d-regular graphs asymptotically almost surely can be coloured with k colours, where k is the smallest integer satisfying d < 2(k−1) log(k−1). From previous lower bounds due to Molloy and Reed, this establishes the chromatic number to be asymptotically almost surely k − 1 or k. If moreover d > (2k−3) log(k−1), then the value k−1 is discarded and...

متن کامل

On the chromatic number of random d-regular graphs

In this work we show that, for any fixed d, random d-regular graphs asymptotically almost surely can be coloured with k colours, where k is the smallest integer satisfying d < 2(k−1) log(k−1). From previous lower bounds due to Molloy and Reed, this establishes the chromatic number to be asymptotically almost surely k− 1 or k. If moreover d > (2k−3) log(k−1), then the value k−1 is discarded and ...

متن کامل

The generalized acyclic edge chromatic number of random regular graphs

The r-acyclic edge chromatic number of a graph is defined to be the minimum number of colours required to produce an edge colouring of the graph such that adjacent edges receive different colours and every cycle C has at least min(|C|, r) colours. We show that (r − 2)d is asymptotically almost surely (a.a.s.) an upper bound on the r-acyclic edge chromatic number of a random d-regular graph, for...

متن کامل

The generalised acyclic edge chromatic number of random regular graphs

The r-acyclic edge chromatic number of a graph is defined to be the minimum number of colours required to produce an edge colouring of the graph such that adjacent edges receive different colours and every cycle C has at least min(|C|, r) colours. We show that (r − 2)d is asymptotically almost surely (a.a.s.) an upper bound on the r-acyclic edge chromatic number of a random d-regular graph, for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2016

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2015.09.006