On the Classical Solutions for the Kuramoto-Sivashinsky Equation with Ehrilch-Schwoebel Effects

نویسندگان

چکیده

The Kuramoto-Sivashinsky equation with Ehrilch-Schwoebel effects models the evolution of surface morphology during Molecular Beam Epitaxy growth, provoked by an interplay between deposition atoms onto and relaxation profile through diffusion. It consists a nonlinear fourth order partial differential equation. Using energy methods we prove well-posedness (i.e., existence, uniqueness stability respect to initial data) classical solutions for Cauchy problem, associated this

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

On the Stochastic Kuramoto-Sivashinsky Equation

In this article we study the solution of the Kuramoto–Sivashinsky equation on a bounded interval subject to a random forcing term. We show that a unique solution to the equation exists for all time and depends continuously on the initial data.

متن کامل

exact solutions of the generalized kuramoto-sivashinsky equation

in this paper we obtain  exact solutions of the generalized kuramoto-sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    the methods used  to determine the exact solutions of the underlying equation are the lie group analysis  and the simplest equation method. the solutions obtained are  then plotted.

متن کامل

Inertial Manifolds for the Kuramoto-sivashinsky Equation

A new theorem is applied to the Kuramoto-Sivashinsky equation with L-periodic boundary conditions, proving the existence of an asymptotically complete inertial manifold attracting all initial data. Combining this result with a new estimate of the size of the globally absorbing set yields an improved estimate of the dimension, N ∼ L.

متن کامل

Meromorphic traveling wave solutions of the Kuramoto–Sivashinsky equation

We determine all cases when there exists a meromorphic solution of the ODE νw + bw + μw + w/2 +A = 0. This equation describes traveling waves solutions of the KuramotoSivashinsky equation. It turns out that there are no other meromorphic solutions besides those explicit solutions found by Kuramoto and Kudryashov. The general method used in this paper, based on Nevanlinna theory, is applicable t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Contemporary mathematics

سال: 2022

ISSN: ['2705-1056', '2705-1064']

DOI: https://doi.org/10.37256/cm.3420221607