On the EMD Sifting Property and Instantaneous Parameters
نویسندگان
چکیده
منابع مشابه
Multi-Property-Preserving Hash Domain Extension and the EMD Transform
We point out that the seemingly strong pseudorandom oracle preserving (PRO-Pr) property of hash function domain-extension transforms defined and implemented by Coron et. al. [12] can actually weaken our guarantees on the hash function, in particular producing a hash function that fails to be even collision-resistant (CR) even though the compression function to which the transform is applied is ...
متن کاملEmd of Gaussian White Noise: Effects of Signal Length and Sifting Number on the Statistical Properties of Intrinsic Mode Functions
GASTÓN SCHLOTTHAUER∗,§, MARÍA EUGENIA TORRES∗,¶, 7 HUGO L. RUFINER†,‖ and PATRICK FLANDRIN‡,// ∗Lab. Signals and Nonlinear Dynamics, Applied Research group 9 on Signal Processing and Pattern Recognition (ARSiPRe) Facultad de Ingenieŕıa, Universidad Nacional de Entre Rı́os 11 Ruta 11 Km 10 Oro Verde, Entre Rı́os 3101, Argentina ∗National Council of Scientific and Technical Research (CONICET) 13 †L...
متن کاملMulti-Property-Preserving Hash Domain Extension: The EMD Transform
In this paper we (1) argue the benefits of replacing the current MD transform with a multi-property-preserving domain extension transform that guarantees numerous properties of the hash function assuming they hold of the compression function; (2) provide a practical, proven-secure multi-domain extension transform suitable for use with the next generation of hash functions; (3) point to some sub...
متن کاملOn Investigating EMD parameters to Search for Gravitational Waves
The Hilbert-Huang transform (HHT) is a novel, adaptive approach to time series analysis. It does not impose a basis set on the data or otherwise make assumptions about the data form, and so the time–frequency decomposition is not limited by spreading due to uncertainty. Because of the high resolution of the time–frequency, we investigate the possibility of the application of the HHT to the sear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Data Science and Adaptive Analysis
سال: 2016
ISSN: 2424-922X,2424-9238
DOI: 10.1142/s2424922x16500108