ON THE ENTIRE SERIES WITH FINITE LOGARITHMIC ORDER
نویسندگان
چکیده
منابع مشابه
On the lower order (R) of an entire Dirichlet series
© Annales de l’institut Fourier, 1974, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملOn Some Results in the Light of Generalized Relative Ritt Order of Entire Functions Represented by Vector Valued Dirichlet Series
In this paper, we study some growth properties of entire functions represented by a vector valued Dirichlet series on the basis of generalized relative Ritt order and generalized relative Ritt lower order.
متن کاملRelative order and type of entire functions represented by Banach valued Dirichlet series in two variables
In this paper, we introduce the idea of relative order and type of entire functions represented by Banach valued Dirichlet series of two complex variables to generalize some earlier results. Proving some preliminary theorems on the relative order, we obtain sum and product theorems and we show that the relative order of an entire function represented by Dirichlet series is the same as that of i...
متن کاملA Note on Exponential-logarithmic and Logarithmic-exponential Series
We explain how the field of logarithmic-exponential series constructed in [DMM1] and [DMM2] embeds as an exponential field in any field of exponential-logarithmic series (constructed in [KK1], [K] and [KS]). On the other hand, we explain why no field of exponential-logarithmic series embeds in the field of logarithmic-exponential series. This clarifies why the two constructions are intrinsicall...
متن کاملOn the Number of Zeros of Successive Derivatives of Entire Functions of Finite Order
1 We use this occasion to point out that the condition lim inf log M (r) < 1 r-+c g(r) in Theorem 2 of [1] can be replaced by the somewhat weaker condition : there exists a, sequence r1, + oo such that log M (r,,) < g(r1,). It is clear from the proof that only this is actually used . Thus the following assertion is true THEOREM B. Let g(r) denote an arbitrary increasing function, defined in 0 <...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Honam Mathematical Journal
سال: 2011
ISSN: 1225-293X
DOI: 10.5831/hmj.2011.33.3.341