On the Finite p-Group with a Small Central Quotient
نویسندگان
چکیده
منابع مشابه
A Note on Absolute Central Automorphisms of Finite $p$-Groups
Let $G$ be a finite group. The automorphism $sigma$ of a group $G$ is said to be an absolute central automorphism, if for all $xin G$, $x^{-1}x^{sigma}in L(G)$, where $L(G)$ be the absolute centre of $G$. In this paper, we study some properties of absolute central automorphisms of a given finite $p$-group.
متن کاملA QUOTIENT OF THE SET [BG,BU(n)] FOR A FINITE GROUP G OF SMALL RANK
Let Gp be a Sylow p-subgroup of the finite groupG and let Char G n (Gp) represent the set of degree n complex characters of Gp that are the restrictions of class functions on G. We construct a natural map ψG : [BG,BU(n)] → ∏ p||G| Char G n (Gp) and prove that ψG is a surjection for all finite groups G that do not contain a subgroup isomorphic to (Z/p) for any prime p. We show, furthermore, that...
متن کاملOn a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group
Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...
متن کاملTHE UPPER CENTRAL SERIES OF A p–GROUP ACTING ON A BOUNDED ABELIAN p-GROUP
We determine the upper central series of the maximal normal p–subgroup of the automorphism group of a bounded abelian p–group.
متن کاملOn the nilpotency class of the automorphism group of some finite p-groups
Let $G$ be a $p$-group of order $p^n$ and $Phi$=$Phi(G)$ be the Frattini subgroup of $G$. It is shown that the nilpotency class of $Autf(G)$, the group of all automorphisms of $G$ centralizing $G/ Fr(G)$, takes the maximum value $n-2$ if and only if $G$ is of maximal class. We also determine the nilpotency class of $Autf(G)$ when $G$ is a finite abelian $p$-group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pure Mathematics
سال: 2017
ISSN: 2160-7583,2160-7605
DOI: 10.12677/pm.2017.74039