On the fractional susceptibility function of piecewise expanding maps
نویسندگان
چکیده
<p style='text-indent:20px;'>We associate to a perturbation <inline-formula><tex-math id="M1">\begin{document}$ (f_t) $\end{document}</tex-math></inline-formula> of (stably mixing) piecewise expanding unimodal map id="M2">\begin{document}$ f_0 two-variable fractional susceptibility function id="M3">\begin{document}$ \Psi_\phi(\eta, z) $\end{document}</tex-math></inline-formula>, depending also on bounded observable id="M4">\begin{document}$ \phi $\end{document}</tex-math></inline-formula>. For fixed id="M5">\begin{document}$ \eta \in (0,1) we show that the id="M6">\begin{document}$ is holomorphic in disc id="M7">\begin{document}$ D_\eta\subset \mathbb{C} centered at zero radius id="M8">\begin{document}$ &gt;1 and id="M9">\begin{document}$ 1) Marchaud derivative order id="M10">\begin{document}$ id="M11">\begin{document}$ t\mapsto \mathcal{R}_\phi(t): = \int \phi(x)\, d\mu_t id="M12">\begin{document}$ t 0 where id="M13">\begin{document}$ \mu_t unique absolutely continuous invariant probability measure id="M14">\begin{document}$ f_t In addition, id="M15">\begin{document}$ admits extension domain id="M16">\begin{document}$ \{\, (\eta, \mathbb{C}^2\mid 0&lt;\Re &lt;1, \, z D_\eta \,\} Finally, if id="M17">\begin{document}$ horizontal, prove id="M18">\begin{document}$ \lim_{\eta (0,1), \to 1}\Psi_\phi(\eta, \partial_t \mathcal{R}_\phi(t)|_{t 0} $\end{document}</tex-math></inline-formula>.</p>
منابع مشابه
On the Susceptibility Function of Piecewise Expanding Interval Maps
We study the susceptibility function
متن کاملDecay of Correlations for Piecewise Expanding Maps
This paper investigates the decay of correlations in a large class of non-Markov one-dimensional expanding maps. The method employed is a special version of a general approach recently proposed by the author. Explicit bounds on the rate of decay of correlations are obtained.
متن کاملSmooth Deformations of Piecewise Expanding Unimodal Maps
In the space of C piecewise expanding unimodal maps, k ≥ 2, we characterize the C smooth families of maps where the topological dynamics does not change (the “smooth deformations”) as the families tangent to a continuous distribution of codimension-one subspaces (the “horizontal” directions) in that space. Furthermore such codimension-one subspaces are defined as the kernels of an explicit clas...
متن کاملSmooth Livšic regularity for piecewise expanding maps
We consider the regularity of measurable solutions χ to the cohomological equation φ = χ ◦ T − χ, where (T,X, μ) is a dynamical system and φ : X → R is a C valued cocycle in the setting in which T : X → X is a piecewise C Gibbs– Markov map, an affine β-transformation of the unit interval or more generally a piecewise C uniformly expanding map of an interval. We show that under mild assumptions,...
متن کاملAlternative Proofs of Linear Response for Piecewise Expanding Unimodal Maps
We give two new proofs that the SRB measure t 7→ μt of a C path ft of unimodal piecewise expanding C maps is differentiable at 0 if ft is tangent to the topological class of f0. The arguments are more conceptual than the one in [4], but require proving Hölder continuity of the infinitesimal conjugacy α (a new result, of independent interest) and using spaces of bounded p-variation. The first ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems
سال: 2021
ISSN: ['1553-5231', '1078-0947']
DOI: https://doi.org/10.3934/dcds.2021133