ON THE HITTING PROBABILITIES OF LIMSUP RANDOM FRACTALS

نویسندگان

چکیده

Let $A$ be a limsup random fractal with indices $\gamma_1, ~\gamma_2 ~$and $\delta$ on $[0,1]^d$. We determine the hitting probability $\mathbb{P}(A\cap G)$ for any analytic set $G$ condition $(\star)$$\colon$ $\dim_{\rm H}(G)>\gamma_2+\delta$, where H}$ denotes Hausdorff dimension. This extends correspondence of Khoshnevisan, Peres and Xiao [10] by relaxing that $P_n$ choosing each dyadic hyper-cube is homogeneous $\lim\limits_{n\to\infty}\frac{\log_2P_n}{n}$ exists. also present some counterexamples to show dimension in $(\star)$ can not replaced packing

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limsup Random Fractals

Orey and Taylor (1974) introduced sets of “fast points” where Brownian increments are exceptionally large, F(λ) := {t ∈ [0, 1] : lim suph→0 |X(t+ h) −X(t)|/ √ 2h| log h|>λ}. They proved that for λ ∈ (0, 1], the Hausdorff dimension of F(λ) is 1 − λ2 a.s. We prove that for any analytic set E ⊂ [0, 1], the supremum of all λ’s for which E intersects F(λ) a.s. equals √ dimP E, where dimP E is the pa...

متن کامل

Hausdorff dimension of limsup random fractals

In this paper we find a critical condition for nonempty intersection of a limsup random fractal and an independent fractal percolation set defined on the boundary of a spherically symmetric tree. We then use a codimension argument to derive a formula for the Hausdorff dimension of limsup random fractals.

متن کامل

Hitting probabilities and large deviations

Let ”Yn•n∈Z+ be a sequence of random variables in R d and let A ⊂ Rd: Then P”Yn ∈ A for some n• is the hitting probability of the set A by the sequence ”Yn•. We consider the asymptotic behavior, as m → ∞, of P”Yn ∈ mA; some n• = P”hitting mA• whenever (1) the probability law of Yn/n satisfies the large deviation principle and (2) the central tendency of Yn/n is directed away from the given set ...

متن کامل

Hitting Probabilities and the Hausdorff Dimension of the Inverse Images of Anisotropic Gaussian Random Fields

Let X = {X(t), t ∈ RN} be a Gaussian random field with values in R defined by X(t) = ( X1(t), . . . , Xd(t) ) , where X1, . . . , Xd are independent copies of a centered Gaussian random field X0. Under certain general conditions on X0, we study the hitting probabilities of X and determine the Hausdorff dimension of the inverse image X−1(F ), where F ⊆ R is a non-random Borel set. The class of G...

متن کامل

Fractals Meet Fractals: Self-Avoiding Random Walks on Percolation Clusters

The scaling behavior of linear polymers in disordered media, modelled by self-avoiding walks (SAWs) on the backbone of percolation clusters in two, three and four dimensions is studied by numerical simulations. We apply the pruned-enriched Rosenbluth chain-growth method (PERM). Our numerical results yield estimates of critical exponents, governing the scaling laws of disorder averages of the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractals

سال: 2022

ISSN: ['1793-6543', '0218-348X']

DOI: https://doi.org/10.1142/s0218348x22500554