On the <i>k</i> -Lucas Numbers and Lucas Polynomials
نویسندگان
چکیده
منابع مشابه
On the Properties of Balancing and Lucas-Balancing $p$-Numbers
The main goal of this paper is to develop a new generalization of balancing and Lucas-balancing sequences namely balancing and Lucas-balancing $p$-numbers and derive several identities related to them. Some combinatorial forms of these numbers are also presented.
متن کاملLucas-sierpiński and Lucas-riesel Numbers
In this paper, we show that there are infinitely many Sierpiński numbers in the sequence of Lucas numbers. We also show that there are infinitely many Riesel numbers in the sequence of Lucas numbers. Finally, we show that there are infinitely many Lucas numbers that are not a sum of two prime powers.
متن کاملOn Lucas-bernoulli Numbers
In this article we investigate the Bernoulli numbers B̂n associated to the formal group laws whose canonical invariant differentials generate the Lucas sequences {Un} and {Vn}. We give explicit expressions for these numbers and prove analogues of Kummer congruences for them.
متن کاملOn the k-Lucas Numbers
From a special sequence of squares of k-Fibonacci numbers, the kLucas sequences are obtained in a natural form. Then, we will study the properties of the k-Lucas numbers and will prove these properties will be related with the k-Fibonaci numbers. In this paper we examine some of the interesting properties of the k-Lucas numbers themselves as well as looking at its close relationship with the k-...
متن کاملOn convolved generalized Fibonacci and Lucas polynomials
We define the convolved hðxÞ-Fibonacci polynomials as an extension of the classical con-volved Fibonacci numbers. Then we give some combinatorial formulas involving the hðxÞ-Fibonacci and hðxÞ-Lucas polynomials. Moreover we obtain the convolved hðxÞ-Fibo-nacci polynomials from a family of Hessenberg matrices. Fibonacci numbers and their generalizations have many interesting properties and appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Turkish Journal of Analysis and Number Theory
سال: 2017
ISSN: 2333-1100
DOI: 10.12691/tjant-5-4-1