On the linearization of some singular, nonlinear elliptic problems and applications
نویسندگان
چکیده
منابع مشابه
On the Linearization of Some Singular, Nonlinear Elliptic Problems and Applications
This paper deals with the spectrum of a linear, weighted eigenvalue problem associated with a singular, second order, elliptic operator in a bounded domain, with Dirichlet boundary data. In particular, we analyze the existence and uniqueness of principal eigenvalues. As an application, we extend the usual concepts of linearization and Frechet derivability, and the method of sub and supersolutio...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Some remarks on singular solutions of nonlinear elliptic equations. I
We study strong maximum principles for singular solutions of nonlinear elliptic and degenerate elliptic equations of second order. An application is given on symmetry of positive solutions in a punctured ball using the method of moving planes. Mathematics Subject Classification (2000). 35J69, 58J05, 53C21, 35J60.
متن کاملSingular Perturbations of Some Nonlinear Problems
In this paper we deal with singular perturbations of nonlinear problems depending on a small parameter ε > 0. First we consider the abstract theory of singular perturbations of variational inequalities involving some nonlinear operators, defined in Banach spaces, and describe the asymptotic behaviour of these solutions when ε → 0. Then these abstract results are applied to some boundary value p...
متن کاملDirichlet Problems with Singular Convection Terms and Applications to Some Elliptic Systems
To be more precise, in [2] is proved the existence of u { weak solution belonging to W 1,2 0 (Ω) ∩ L ∗∗ (Ω), if m ≥ 2N N+2 (“Stampacchia” theory); distributional solution belonging to W 1,m ∗ 0 (Ω), if 1 < m < 2N N+2 (“Calderon-Zygmund” theory); (5) where m∗ = mN N−m (1 ≤ m < N) and m ∗∗ = mN N−2m (1 ≤ m < N 2 ). Note that the above existence results are exactly the results proved with E = 0 in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2002
ISSN: 0294-1449
DOI: 10.1016/s0294-1449(02)00102-6