On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators
نویسندگان
چکیده
منابع مشابه
Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators
We study uniformly elliptic fully nonlinear equations of the type F (D2u,Du, u, x) = f(x). We show that convex positively 1-homogeneous operators possess two principal eigenvalues and eigenfunctions, and study these objects ; we obtain existence and uniqueness results for non-proper operators whose principal eigenvalues (in some cases, only one of them) are positive ; finally, we obtain an exis...
متن کاملNon uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon
We study uniformly elliptic fully nonlinear equations of the type F (D2u,Du, u, x) = f(x) in Ω, where F is a convex positively 1-homogeneous operator and Ω ⊂ RN is a regular bounded domain. We prove non-existence and multiplicity results for the Dirichlet problem, when the two principal eigenvalues of F are of different sign. Our results extend to more general cases, for instance, when F is not...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولEigenvalues for Radially Symmetric Non-variational Fully Nonlinear Operators
In this paper we present an elementary theory about the existence of eigenvalues for fully nonlinear radially symmetric 1-homogeneous operators. A general theory for first eigenvalues and eigenfunctions of 1-homogeneous fully nonlinear operators exists in the framework of viscosity solutions. Here we want to show that for the radially symmetric operators (and one dimensional) a much simpler the...
متن کاملDirichlet Duality and the Nonlinear Dirichlet Problem
We study the Dirichlet problem for fully nonlinear, degenerate elliptic equations of the form F.Hessu/ D 0 on a smoothly bounded domain b Rn. In our approach the equation is replaced by a subset F Sym.Rn/ of the symmetric n nmatrices with @F fF D 0g. We establish the existence and uniqueness of continuous solutions under an explicit geometric “F -convexity” assumption on the boundary @. We a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Comptes Rendus Mathematique
سال: 2006
ISSN: 1631-073X
DOI: 10.1016/j.crma.2005.11.003