On the regularity of arithmetic multiplicative functions, II

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternating Sums Concerning Multiplicative Arithmetic Functions

We deduce asymptotic formulas for the alternating sums ∑ n≤x(−1)f(n) and ∑ n≤x(−1) 1 f(n) , where f is one of the following classical multiplicative arithmetic functions: Euler’s totient function, the Dedekind function, the sum-of-divisors function, the divisor function, the gcd-sum function. We also consider analogs of these functions, which are associated to unitary and exponential divisors, ...

متن کامل

Mean-value Theorems for Multiplicative Arithmetic Functions of Several Variables

Let f : Nn → C be an arithmetic function of n variables, where n ≥ 2. We study the mean-value M(f) of f that is defined to be lim x1,...,xn→∞ 1 x1 · · ·xn ∑ m1≤x1, ... , mn≤xn f(m1, . . . , mn), if this limit exists. We first generalize the Wintner theorem and then consider the multiplicative case by expressing the mean-value as an infinite product over all prime numbers. In addition, we study ...

متن کامل

A Representation of Multiplicative Arithmetic Functions by Symmetric Polynomials

We give a representation of the classical theory of multiplicative arithmetic functions (MF)in the ring of symmetric polynomials. The basis of the ring of symmetric polynomials that we use is the isobaric basis, a basis especially sensitive to the combinatorics of partitions of the integers. The representing elements are recursive sequences of Schur polynomials evaluated at subrings of the comp...

متن کامل

On the Composition of Some Arithmetic Functions, Ii

We study certain properties and conjuctures on the composition of the arithmetic functions σ, φ, ψ, where σ is the sum of divisors function, φ is Euler’s totient, and ψ is Dedekind’s function.

متن کامل

Multiplicative Renormalization and Generating Functions Ii

Let μ be a probability measure on the real line with finite moments of all orders. Suppose the linear span of polynomials is dense in L(μ). Then there exists a sequence {Pn}∞ n=0 of orthogonal polynomials with respect to μ such that Pn is a polynomial of degree n with leading coefficient 1 and the equality (x − αn)Pn(x) = Pn+1(x) + ωnPn−1(x) holds, where αn and ωn are SzegöJacobi parameters. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1981

ISSN: 0386-2194

DOI: 10.3792/pjaa.57.130