On the spectral structure of Jordan-Kronecker products of symmetric and skew-symmetric matrices

نویسندگان

چکیده

Motivated by the conjectures formulated in 2003 [28], we study interlacing properties of eigenvalues A⊗B+B⊗A for pairs n-by-n matrices A,B. We prove that every pair symmetric (and skew-symmetric matrices) with one them at most rank two, odd spectrum (those determined eigenvectors) interlaces its even eigenvectors). Using this result, also show when n≤3, The results specify structure eigenvectors corresponding to extreme eigenvalues. In addition, identify where conjecture(s) and some hold a number structured matrices. settle [28] they fail A,B, n≥4 ranks A B are least 3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On skew-symmetric differentiation matrices

The theme of this paper is the construction of finite-difference approximations to the first derivative in the presence of Dirichlet boundary conditions. Stable implementation of splitting-based discretisation methods for the convectiondiffusion equation requires the underlying matrix to be skew symmetric and this turns out to be a surprisingly restrictive condition. We prove that no skewsymmet...

متن کامل

Commutators of Skew-Symmetric Matrices

In this paper we develop a theory for analysing the size of a Lie bracket or commutator in a matrix Lie algebra. Complete details are given for the Lie algebra so(n) of skew symmetric matrices. 1 Norms and commutators in Mn[R] and so(n) This paper is concerned with the following question. Let g be a Lie algebra (Carter, Segal & Macdonald 1995, Humphreys 1978, Varadarajan 1984). Given X,Y ∈ g an...

متن کامل

Unitary Completions Of Complex Symmetric And Skew Symmetric Matrices ∗

Unitary symmetric completions of complex symmetric matrices are obtained via Autonne decomposition. The problem arises from atomic physics. Of independent interest unitary skew symmetric completions of skew symmetric matrices are also obtained by Hua decomposition.

متن کامل

Principally Unimodular Skew-Symmetric Matrices

A square matrix is principally unimodular if every principal submatrix has determinant 0 or 1. Let A be a symmetric (0; 1)-matrix, with a zero diagonal. A PU-orientation of A is a skew-symmetric signing of A that is PU. If A 0 is a PU-orientation of A, then, by a certain decomposition of A, we can construct every PU-orientation of A from A 0. This construction is based on the fact that the PU-o...

متن کامل

Symmetric Kronecker Products and Semiclassical Wave Packets

We investigate the iterated Kronecker product of a square matrix with itself and prove an invariance property for symmetric subspaces. This motivates the definition of an iterated symmetric Kronecker product and the derivation of an explicit formula for its action on vectors. We apply our result for describing a linear change in the matrix parametrization of semiclassical wave packets.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2021

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2020.08.022