On the Stability of Incommensurate h-Nabla Fractional-Order Difference Systems

نویسندگان

چکیده

This work aims to present a study on the stability analysis of linear and nonlinear incommensurate h-nabla fractional-order difference systems. Several theoretical results are inferred with help using some schemes, such as Z-transform method, Cauchy–Hadamard theorem, Taylor development approach, final-value theorem Banach fixed point theorem. These verified numerically via two illustrative numerical examples that show stabilities solutions systems at hand.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some Fractional Systems of Difference Equations

This paper deal with the solutions of the systems of difference equations $$x_{n+1}=frac{y_{n-3}y_nx_{n-2}}{y_{n-3}x_{n-2}pm y_{n-3}y_n pm y_nx_{n-2}}, ,y_{n+1}=frac{y_{n-2}x_{n-1}}{ 2y_{n-2}pm x_{n-1}},,nin mathbb{N}_{0},$$ where $mathbb{N}_{0}=mathbb{N}cup left{0right}$, and initial values $x_{-2},, x_{-1},,x_{0},,y_{-3},,y_{-2},,y_{-1},,y_{0}$ are non-zero real numbers.

متن کامل

Stability analysis of fractional-order nonlinear Systems via Lyapunov method

‎In this paper‎, ‎we study stability of fractional-order nonlinear dynamic systems by means of Lyapunov‎ ‎method‎. ‎To examine the obtained results‎, ‎we employe the developed techniques on test examples‎.

متن کامل

On the Definitions of Nabla Fractional Operators

and Applied Analysis 3 Definition 2.2. Let ρ t t − 1 be the backward jump operator. Then i the nabla left fractional sum of order α > 0 starting from a is defined by ∇−α a f t 1 Γ α t ∑ s a 1 ( t − ρ s α−1f s , t ∈ Na 1 2.4 ii the nabla right fractional sum of order α > 0 ending at b is defined by b∇−αf t 1 Γ α b−1 ∑ s t ( s − ρ t α−1f s 1 Γ α b−1 ∑ s t σ s − t α−1f s , t ∈b−1 N. 2.5 We want to...

متن کامل

Nabla discrete fractional calculus and nabla inequalities

Here we define a Caputo like discrete nabla fractional difference and we produce discrete nabla fractional Taylor formulae for the first time. We estimate their remaiders. Then we derive related discrete nabla fractional Opial, Ostrowski, Poincaré and Sobolev type inequalities .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractal and fractional

سال: 2022

ISSN: ['2504-3110']

DOI: https://doi.org/10.3390/fractalfract6030158