ON THE STABILITY OF THE QUADRATIC-ADDITIVE TYPE FUNCTIONAL EQUATION IN RANDOM NORMED SPACES VIA FIXED POINT METHOD
نویسندگان
چکیده
منابع مشابه
On the Stability of the Generalized Quadratic and Additive Functional Equation in Random Normed Spaces via Fixed Point Method
In this paper, we prove the stability in random normed spaces via fixed point method for the functional equation f(x+ 2y)− 2f(x+ y) + 2f(x− y)− f(x− 2y) = 0.
متن کاملOn the Stability of the n-Dimensional Quadratic and Additive Functional Equation in Random Normed Spaces via Fixed Point Method
In this paper, we prove the stability in random normed spaces via fixed point method for the functional equation f ⎛⎝ n ∑ j=1 xj ⎞⎠ + (n − 2) n ∑ j=1 f(xj) − ∑ 1≤i<j≤n f(xi + xj) = 0. Mathematics Subject Classification: 39B82, 46S50, 46S40
متن کاملA Fixed Point Approach to the Stability of a Quadratic-Additive Type Functional Equation in Non-Archimedean Normed Spaces
In this paper, we investigate the generalized Hyers–Ulam stability for the functional equation f(ax+y)+af(y−x)− a(a+ 1) 2 f(x)− a(a+ 1) 2 f(−x)− (a+1)f(y) = 0 in non-Archimedean normed spaces. Mathematics Subject Classification: 39B52, 39B82
متن کاملStability of a Quadratic and Additive Type Functional Equation in Random Normed Spaces
In this paper, we investigate the stability problems for the functional equation f(ax+ y) + af(x− y)− a2+3a 2 f(x) −a2−a 2 f(−x)− f(y)− af(−y) = 0 in random normed spaces. Mathematics Subject Classification: 39B82, 46S50
متن کاملStability of a Mixed Type Additive, Quadratic and Cubic Functional Equation in Random Normed Spaces
In this paper, we obtain the general solution and the stability result for the following functional equation in random normed spaces (in the sense of Sherstnev) under arbitrary t-norms f(x + 3y) + f(x− 3y) = 9(f(x + y) + f(x− y))− 16f(x).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Korean Journal of Mathematics
سال: 2012
ISSN: 1976-8605
DOI: 10.11568/kjm.2012.20.1.019