On the sum number and integral sum number of hypertrees and complete hypergraphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The sum number of d-partite complete hypergraphs

A d-uniform hypergraph H is a sum hypergraph iff there is a finite S ⊆ IN such that H is isomorphic to the hypergraph H+d (S) = (V, E), where V = S and E = {{v1, . . . , vd} : (i 6= j ⇒ vi 6= vj)∧ ∑d i=1 vi ∈ S}. For an arbitrary d-uniform hypergraph H the sum number σ = σ(H) is defined to be the minimum number of isolated vertices w1, . . . , wσ 6∈ V such that H ∪ {w1, . . . , wσ} is a sum hyp...

متن کامل

The unit sum number of discrete modules

In this paper, we show that every element of a discrete module is a sum of two units if and only if its endomorphism ring has no factor ring isomorphic to $Z_{2}$. We also characterize unit sum number equal to two for the endomorphism ring of quasi-discrete modules with finite exchange property.

متن کامل

The unit sum number of Baer rings

In this paper we prove that each element of any regular Baer ring is a sum of two units if no factor ring of R is isomorphic to Z_2 and we characterize regular Baer rings with unit sum numbers $omega$ and $infty$. Then as an application, we discuss the unit sum number of some classes of group rings.

متن کامل

The integral sum number of complete bipartite graphs Kr, s

A graph G=(V; E) is said to be an integral sum graph (sum graph) if its vertices can be given a labeling with distinct integers (positive integers), so that uv ∈ E if and only if u+ v ∈ V . The integral sum number (sum number) of a given graph G, denoted by (G) ( (G)), was de:ned as the smallest number of isolated vertices which when added to G result in an integral sum graph (sum graph). In th...

متن کامل

Classes of hypergraphs with sum number one

A hypergraph H is a sum hypergraph iff there are a finite S ⊆ IN and d, d ∈ IN with 1 < d ≤ d such that H is isomorphic to the hypergraph Hd,d(S) = (V, E) where V = S and E = {e ⊆ S : d ≤ |e| ≤ d ∧ ∑ v∈e v ∈ S}. For an arbitrary hypergraph H the sum number σ = σ(H) is defined to be the minimum number of isolated vertices w1, . . . , wσ 6∈ V such that H ∪ {w1, . . . , wσ} is a sum hypergraph. Fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2001

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(00)00452-0