On the use of reduced integration in combination with discontinuous Galerkin discretization: application to volumetric and shear locking problems
نویسندگان
چکیده
منابع مشابه
on the relationship between self- regulated learning strategies use and willingness to communicate in the context of writing
این تحقیق به منظور بررسی رابطه بین میزان استراتژیهای خود-تنظیم شده یادگیری و تمایل به ایجاد ارتباط دانشجویان زبان انگلیسی انجام شده است.علاوه بر این،روابط و کنش های موجود بین ریزسنجه های استراتژیهای خود-تنظیم شده یادگُیری ، مهارت نگارش و تمایل به برقراری ارتباط و همچنین تاٍثیرجنسیت دانشجویان زبان انگلیسی در استراتژیهای خود-تنظیم شده یادگیری و تمایل به برقراری ارتباط آنها مورد بررسی قرار گرفته شد.
15 صفحه اولBDDC methods for discontinuous Galerkin discretization of elliptic problems
A discontinuous Galerkin (DG) discretization of Dirichlet problem for second-order elliptic equations with discontinuous coefficients in 2-D is considered. For this discretization, balancing domain decomposition with constraints (BDDC) algorithms are designed and analyzed as an additive Schwarz method (ASM). The coarse and local problems are defined using special partitions of unity and edge co...
متن کاملLocking-free adaptive discontinuous Galerkin FEM for linear elasticity problems
An adaptive discontinuous Galerkin finite element method for linear elasticity problems is presented. We develop an a posteriori error estimate and prove its robustness with respect to nearly incompressible materials (absence of volume locking). Furthermore, we present some numerical experiments which illustrate the performance of the scheme on adaptively refined meshes.
متن کاملKrylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods
Integration factor methods are a class of ‘‘exactly linear part’’ time discretization methods. In [Q. Nie, Y.-T. Zhang, R. Zhao, Efficient semi-implicit schemes for stiff systems, Journal of Computational Physics, 214 (2006) 521–537], a class of efficient implicit integration factor (IIF) methods were developed for solving systems with both stiff linear and nonlinear terms, arising from spatial...
متن کاملThe Application of Discontinuous Galerkin Space and Velocity Discretization to Model Kinetic Equations
An approach based on a discontinuous Galerkin discretization is proposed for the Bhatnagar-Gross-Krook model kinetic equation. This approach allows for a high order polynomial approximation of molecular velocity distribution function both in spatial and velocity variables. It is applied to model normal shock wave and heat transfer problems. Convergence of solutions with respect to the number of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Modeling and Simulation in Engineering Sciences
سال: 2018
ISSN: 2213-7467
DOI: 10.1186/s40323-018-0103-x