On the Zeros of the Riemann Zeta-Function

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple Zeros of the Riemann Zeta-function

Assuming the Riemann Hypothesis, Montgomery and Taylor showed that at least 67.25% of the zeros of the Riemann zeta-function are simple. Using Montgomery and Taylor's argument together with an elementary combinatorial argument, we prove that assuming the Riemann Hypothesis at least 67.275% of the zeros are simple.

متن کامل

Zeros of the Riemann Zeta-Function on the Critical Line

It was shown by Selberg [3] that the Riemann Zeta-function has at least cT log T zeros on the critical line up to height T, for some positive absolute constant c. Indeed Selberg’s method counts only zeros of odd order, and counts each such zero once only, regardless of its multiplicity. With this in mind we shall write γ̂i for the distinct ordinates of zeros of ζ(s) on the critical line of odd m...

متن کامل

On the Zeros of the Riemann Zeta Function

We describe extensive computations which show that Riemann's zeta function f(s) has exactly 200,000,001 zeros of the form a + it in the region 0 < t < 81,702,130.19; all these zeros are simple and he on the line a = j. (This extends a similar result for the first 81,000,001 zeros, established by Brent in Math. Comp., v. 33, 1979, pp. 1361-1372.) Counts of the numbers of Gram blocks of various t...

متن کامل

On simple zeros of the Riemann zeta-function

We investigate the distribution of simple zeros of the Riemann zeta-function. Let H ≤ T and L = log T . We calculate in a new way (following old ideas of Atkinson and new ideas of Jutila and Motohashi) the mean square of the product of F (s) = ζ(s) + 1 Lζ ′(s) and a certain Dirichlet polynomial A(s) = ∑ n≤M a(n) ns of length M = T θ with θ < 38 near the critical line: if R is a positive constan...

متن کامل

Distribution of the zeros of the Riemann Zeta function

One of the most celebrated problem of mathematics is the Riemann hypothesis which states that all the non trivial zeros of the Zeta-function lie on the critical line <(s) = 1/2. Even if this famous problem is unsolved for so long, a lot of things are known about the zeros of ζ(s) and we expose here the most classical related results : all the non trivial zeros lie in the critical strip, the num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1969

ISSN: 0002-9939

DOI: 10.2307/2036948