On totally geodesic boundaries of hyperbolic $3$-manifolds

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geodesic planes in hyperbolic 3-manifolds

In this talk we discuss the possible closures of geodesic planes in a hyperbolic 3-manifold M. When M has finite volume Shah and Ratner (independently) showed that a very strong rigidity phenomenon holds, and in particular such closures are always properly immersed submanifolds of M with finite area. Manifolds with infinite volume, however, are far less understood and are the main subject of th...

متن کامل

Geodesic Intersections in Arithmetic Hyperbolic 3-manifolds

It was shown by Chinburg and Reid that there exist closed hyperbolic 3-manifolds in which all closed geodesics are simple. Subsequently, Basmajian and Wolpert showed that almost all quasi-Fuchsian 3-manifolds have all closed geodesics simple and disjoint. The natural conjecture arose that the Chinburg-Reid examples also had disjoint geodesics. Here we show that this conjecture is both almost tr...

متن کامل

Small Hyperbolic 3-Manifolds With Geodesic Boundary

We classify the orientable finite-volume hyperbolic 3-manifolds having nonempty compact totally geodesic boundary and admitting an ideal triangulation with at most four tetrahedra. We also compute the volume of all such manifolds, we describe their canonical Kojima decomposition, and we discuss manifolds having cusps. The manifolds built from one or two tetrahedra were previously known. There a...

متن کامل

The length spectra of arithmetic hyperbolic 3-manifolds and their totally geodesic surfaces

We examine the relationship between the length spectrum and the geometric genus spectrum of an arithmetic hyperbolic 3-orbifold M . In particular we analyze the extent to which the geometry of M is determined by the closed geodesics coming from finite area totally geodesic surfaces. Using techniques from analytic number theory, we address the following problems: Is the commensurability class of...

متن کامل

On deformations of hyperbolic 3–manifolds with geodesic boundary

Let M be a complete finite-volume hyperbolic 3–manifold with compact non-empty geodesic boundary and k toric cusps, and let T be a geometric partially truncated triangulation of M . We show that the variety of solutions of consistency equations for T is a smooth manifold or real dimension 2k near the point representing the unique complete structure on M . As a consequence, the relation between ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kodai Mathematical Journal

سال: 1992

ISSN: 0386-5991

DOI: 10.2996/kmj/1138039601