On uniform Kadec-Klee properties and rotundity in generalized Cesàro sequence spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On uniform Kadec-Klee properties and rotundity in generalized Cesàro sequence spaces

We consider the generalized Cesàro sequence spaces defined by Suantai (2003) and consider it equipped with the Amemiya norm. The main purpose of this paper is to show that ces (p) equipped with the Amemiya norm is rotund and has uniform Kadec-Klee property. 1. Introduction. In the whole paper, N and R stand for the sets of natural numbers and real numbers, respectively. Let (X, · ·) be a real n...

متن کامل

On Semi-Uniform Kadec-Klee Banach Spaces

and Applied Analysis 3 We now introduce a property lying between U-space and semi-KK. Definition 1.8. We say that a Banach space X is semi-uniform Kadec-Klee if for every ε > 0 there exists a δ > 0 such that semi-UKK : {xn} ⊂ SX xn ⇀ x 〈 xn − x, fn 〉 ≥ ε, for some {fn } ⊂ SX∗ satisfying fn ∈ ∇xn ∀n ⎫ ⎪ ⎪⎬ ⎪ ⎪⎭ ⇒ ‖x‖ ≤ 1 − δ. 1.10 In this paper, we prove that semi-UKK property is a nice generali...

متن کامل

Uniform Kadec-Klee Property in Banach Lattices

We prove that a Banach lattice X which does not contain the ln ∞uniformly has an equivalent norm which is uniformly Kadec-Klee for a natural topology τ on X. In case the Banach lattice is purely atomic, the topology τ is the coordinatewise convergence topology. 1980 Mathematics Subject Classification: Primary 46B03, 46B42.

متن کامل

KADEC-KLEE PROPERTIES FOR L(`p, `q)

It is proved that L(`p, `q) has the KK property if and only if it has the UKK property if and only if 1 < q < 2 < p < ∞. It is also proved that L(c0, `1) has the UKK property and that L(c0, `q) can be renormed to have the weak-star UKK property if (and only if) 1 ≤ q < 2. In all other cases L(`p, `q) has no equivalent UKK norm. Finally, it is proved that none of these spaces is either strictly ...

متن کامل

A variational principle in reflexive spaces with Kadec-Klee norm

We prove a variational principle in reflexive Banach spaces X with KadecKlee norm, which asserts that any Lipschitz (or any proper lower semicontinuous bounded from below extended real-valued) function in X can be perturbed with a parabola in such a way that the perturbed function attains its infimum (even more can be said — the infimum is well-posed). In addition, we have genericity of the poi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2004

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s016117120430726x