On weakly n-dimensional spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On weakly bisequential spaces

Weakly bisequential spaces were introduced by A.V. Arhangel’skii [1], in this paper. We discuss the relations between weakly bisequential spaces and metric spaces, countably bisequential spaces, Fréchet-Urysohn spaces.

متن کامل

On pairwise weakly Lindelof bitopological spaces

In the present paper we introduce and study the notion of pairwise weakly Lindelof bitopological spaces and obtain some results. Further, we also study the pairwise weakly Lindelof subspaces and subsets, and investigate some of their properties. It was proved that a pairwise weakly Lindelof property is not a hereditary property.

متن کامل

N-Dimensional Binary Vector Spaces

The binary set {0, 1} together with modulo-2 addition and multiplication is called a binary field, which is denoted by F2. The binary field F2 is defined in [1]. A vector space over F2 is called a binary vector space. The set of all binary vectors of length n forms an n-dimensional vector space Vn over F2. Binary fields and n-dimensional binary vector spaces play an important role in practical ...

متن کامل

on pairwise weakly lindelof bitopological spaces

in the present paper we introduce and study the notion of pairwise weakly lindelof bitopological spaces and obtain some results. further, we also study the pairwise weakly lindelof subspaces and subsets, and investigate some of their properties. it was proved that a pairwise weakly lindelof property is not a hereditary property.

متن کامل

Lines on Planes in n-Dimensional Euclidean Spaces

The notation and terminology used here are introduced in the following papers: [1], [5], [12], [4], [9], [14], [13], [8], [15], [6], [2], [3], [7], [11], and [10]. We follow the rules: a, a1, a2, a3, b, b1, b2, b3, r, s, t, u are real numbers, n is a natural number, and x0, x, x1, x2, x3, y0, y, y1, y2, y3 are elements of R . One can prove the following propositions: (1) s t · (u · x) = s·u t ·...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 1979

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm-103-1-1-8