On zeros of characteristic p zeta function
نویسندگان
چکیده
منابع مشابه
Simple Zeros of the Riemann Zeta-function
Assuming the Riemann Hypothesis, Montgomery and Taylor showed that at least 67.25% of the zeros of the Riemann zeta-function are simple. Using Montgomery and Taylor's argument together with an elementary combinatorial argument, we prove that assuming the Riemann Hypothesis at least 67.275% of the zeros are simple.
متن کاملOn the Multiplicity of Zeros of the Zeta-function
A b s t r a c t. Several results are obtained concerning multiplicities of zeros of the Riemann zeta-function ζ(s). They include upper bounds for multiplicities, showing that zeros with large multiplicities have to lie to the left of the line σ = 1. A zero-density counting function involving multiplicities is also discussed. AMS Subject Classification (1991): 11M06
متن کاملOn the distribution of zeros of the Hurwitz zeta-function
Assuming the Riemann hypothesis, we prove asymptotics for the sum of values of the Hurwitz zeta-function ζ(s, α) taken at the nontrivial zeros of the Riemann zeta-function ζ(s) = ζ(s, 1) when the parameter α either tends to 1/2 and 1, respectively, or is fixed; the case α = 1/2 is of special interest since ζ(s, 1/2) = (2s − 1)ζ(s). If α is fixed, we improve an older result of Fujii. Besides, we...
متن کاملZeros of the Riemann Zeta-Function on the Critical Line
It was shown by Selberg [3] that the Riemann Zeta-function has at least cT log T zeros on the critical line up to height T, for some positive absolute constant c. Indeed Selberg’s method counts only zeros of odd order, and counts each such zero once only, regardless of its multiplicity. With this in mind we shall write γ̂i for the distinct ordinates of zeros of ζ(s) on the critical line of odd m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2006
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2005.06.008