Operations on Z-numbers with acceptable degree of specificity
نویسندگان
چکیده
منابع مشابه
Commutativity degree of $mathbb{Z}_p$≀$mathbb{Z}_{p^n}
For a nite group G the commutativity degree denote by d(G) and dend:$$d(G) =frac{|{(x; y)|x, yin G,xy = yx}|}{|G|^2}.$$ In [2] authors found commutativity degree for some groups,in this paper we nd commutativity degree for a class of groups that have high nilpontencies.
متن کاملA Note on Z-numbers
Decisions are based on information. To be useful, information must be reliable. Basically, the concept of a Z-number relates to the issue of reliability of information. A Z-number, Z, has two components, Z = (A,B). The first component, A, is a restriction (constraint) on the values which a real-valued uncertain variable, X, is allowed to take. The second component, B, is a measure of reliabilit...
متن کاملSome Operations on Quaternion Numbers
(1) <(z1 · z2) = <(z2 · z1). (2) If z is a real number, then z + z3 = <(z) + <(z3) + =1(z3) · i+ =2(z3) · j + =3(z3) · k. (3) If z is a real number, then z − z3 = 〈<(z)−<(z3),−=1(z3),−=2(z3), −=3(z3)〉H. (4) If z is a real number, then z · z3 = 〈<(z) · <(z3),<(z) · =1(z3),<(z) · =2(z3),<(z) · =3(z3)〉H. (5) If z is a real number, then z · i = 〈0,<(z), 0, 0〉H. (6) If z is a real number, then z · j...
متن کاملSome Operations on Quaternion Numbers
In this article, we give some equality and basic theorems about quaternion numbers, and some special operations. the notation and terminology for this paper. In this paper z 1 , z 2 , z 3 , z 4 , z are quaternion numbers. The following propositions are true: (1) (z 1 · z 2) = (z 2 · z 1). (2) If z is a real number, then z + z 3 = (z) + (z 3) + 1 (z 3) · i + 2 (z 3) · j + 3 (z 3) · k. (4) If z i...
متن کاملOrdinal Operations on Surreal Numbers
An open problem posed by John H. Conway in [2] was whether one could, on his system of numbers and games, ' . . . define operations of addition and multiplication which will restrict on the ordinals to give their usual operations'. Such a definition for addition was later given in [4], and this paper will show that a definition also exists for multiplication. An ordinal exponentiation operation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2017
ISSN: 1877-0509
DOI: 10.1016/j.procs.2017.11.204