Operator Formalism for Topology-Conserving Crossing Dynamics in Planar Knot Diagrams

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Crossing-State Equivalence Classes for Rapid Relabeling of Knot-Diagrams Representing 21/2D Scenes

In our previous research, we have demonstrated a sophisticated computer-assisted drawing program called Druid, which permits easy construction of 21/2D scenes. A 21/2D scene is a representation of surfaces that is fundamentally two-dimensional, but which also represents the relative depths of those surfaces in the third dimension. This paper improves Druid’s efficiency by exploitating a topolog...

متن کامل

Computing Chebyshev knot diagrams

A Chebyshev curve C(a, b, c, φ) has a parametrization of the form x(t) = Ta(t); y(t) = Tb(t); z(t) = Tc(t + φ), where a, b, c are integers, Tn(t) is the Chebyshev polynomial of degree n and φ ∈ R. When C(a, b, c, φ) is nonsingular, it defines a polynomial knot. We determine all possible knot diagrams when φ varies. Let a, b, c be integers, a is odd, (a, b) = 1, we show that one can list all pos...

متن کامل

Invariants of Knot Diagrams

We construct a new order 1 invariant for knot diagrams. We use it to determine the minimal number of Reidemeister moves needed to pass between certain pairs of knot diagrams.

متن کامل

vertex centered crossing number for maximal planar graph

the crossing number of a graph  is the minimum number of edge crossings over all possible drawings of  in a plane. the crossing number is an important measure of the non-planarity of a graph, with applications in discrete and computational geometry and vlsi circuit design. in this paper we introduce vertex centered crossing number and study the same for maximal planar graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Physics

سال: 2015

ISSN: 0022-4715,1572-9613

DOI: 10.1007/s10955-014-1161-1