Optimal Approximation of Skorohod Integrals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Stein approximation for Itô and Skorohod integrals

We derive conditional Edgeworth-type expansions for Skorohod and Itô integrals with respect to Brownian motion, based on cumulant operators defined by the Malliavin calculus. As a consequence we obtain conditional Stein approximation bounds for multiple stochastic integrals and quadratic Brownian functionals.

متن کامل

Central limit theorems for multiple Skorohod integrals

In this paper, we prove a central limit theorem for a sequence of multiple Skorohod integrals using the techniques of Malliavin calculus. The convergence is stable, and the limit is a conditionally Gaussian random variable. Some applications to sequences of multiple stochastic integrals, and renormalized weighted quadratic variation of the fractional Brownian motion are discussed.

متن کامل

Optimal Approximation Rate of Certain Stochastic Integrals

Given an increasing function H : [0, 1) → [0,∞) and An(H) := inf τ∈Tn n X i=1 Z ti ti−1 (ti − t)H (t)dt ! 1 2 , where Tn := {τ = (ti) n i=0 : 0 = t0 < t1 < · · · < tn = 1}, we characterize the property An(H) ≤ c √ n , and give conditions for An(H) ≤ c √ nβ and An(H) ≥ 1 c √ nβ for β ∈ (0, 1), both in terms of integrability properties of H . These results are applied to the approximation of cert...

متن کامل

Stein approximation for Itô and Skorohod integrals by Edgeworth type expansions

We derive Edgeworth-type expansions for Skorohod and Itô integrals with respect to Brownian motion, based on cumulant operators defined by the Malliavin calculus. As a consequence we obtain Stein approximation bounds for stochastic integrals, which apply to SDE solutions and to multiple stochastic integrals.

متن کامل

Cumulant operators and moments of the Itô and Skorohod integrals

where the sum runs over the partitions B1, . . . , Ba of {1, . . . , n} with cardinal |Bi| by the Faà di Bruno formula, cf. [5], [6] and references therein for background on combinatorial probability. When X is centered Gaussian, e.g. X is the Wiener integral of a deterministic function with respect to a standard Brownian motion (Bt)t∈R+ , we have κ X n = 0, n 6= 2, and (1.1) reads as Wick’s th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2016

ISSN: 0894-9840,1572-9230

DOI: 10.1007/s10959-016-0716-2