Optimal Bounds for the <i>k</i> -cut Problem

نویسندگان

چکیده

In the k -cut problem, we want to find lowest-weight set of edges whose deletion breaks a given (multi)graph into connected components. Algorithms Karger and Stein can solve this in roughly O ( n 2k ) time. However, lower bounds from conjectures about -clique problem imply that ? (1- o (1)) time is likely needed. Recent results Gupta, Lee, Li have new algorithms for general 1.98k + O(1) time, as well specialized with better performance certain classes graphs (e.g., small integer edge weights). work, resolve graphs. We show Contraction Algorithm outputs any fixed weight ? ? probability - ), where denotes minimum weight. This also gives an extremal bound on number -cuts algorithm compute polylog( runtime. Both are tight up lower-order factors, algorithmic assuming hardness max-weight -clique. The first main ingredient our result cuts less than 2 / , using Sunflower lemma. second fine-grained analysis how graph shrinks—and average degree evolves—in process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral bounds for the maximum cut problem

The maximum cut problem this paper deals with can be formulated as follows. Given an undirected simple graph G = (V,E) where V and E stand for the node and edge sets respectively, and given weights assigned to the edges: (wij)ij∈E , a cut δ(S), with S ⊆ V is de ned as the set of edges in E with exactly one endnode in S, i.e. δ(S) = {ij ∈ E | |S ∩ {i, j}| = 1}. The weight w(S) of the cut δ(S) is...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Optimal Bounds for the Change-Making Problem

The change making problem is the problem of representing a given value with the fewest coins possible We investigate the prob lem of determining whether the greedy algorithm produces an opti mal representation of all amounts for a given set of coin denominations c c cm Chang and Gill show that if the greedy algorithm is not always optimal then there exists a counterexample x in the range c x cm...

متن کامل

Optimal bounds for the colored Tverberg problem

We prove a “Tverberg type” multiple intersection theorem. It strengthens the prime case of the original Tverberg theorem from 1966, as well as the topological Tverberg theorem of Bárány et al. (1980), by adding color constraints. It also provides an improved bound for the (topological) colored Tverberg problem of Bárány & Larman (1992) that is tight in the prime case and asymptotically optimal ...

متن کامل

Towards Optimal Bounds for Implicit Factorization Problem

We propose a new algorithm to solve the Implicit Factorization Problem, which was introduced by May and Ritzenhofen at PKC’09. In 2011, Sarkar and Maitra (IEEE TIT 57(6): 4002-4013, 2011) improved May and Ritzenhofen’s results by making use of the technique for solving multivariate approximate common divisors problem. In this paper, based on the observation that the desired root of the equation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the ACM

سال: 2021

ISSN: ['0004-5411', '1557-735X']

DOI: https://doi.org/10.1145/3478018