Optimal error estimates for Chebyshev approximations of functions with limited regularity in fractional Sobolev-type spaces
نویسندگان
چکیده
منابع مشابه
Optimal error estimates in Jacobi-weighted Sobolev spaces for polynomial approximations on the triangle
Spectral approximations on the triangle by orthogonal polynomials are studied in this paper. Optimal error estimates in weighted semi-norms for both the L2− and H1 0−orthogonal polynomial projections are established by using the generalized Koornwinder polynomials and the properties of the Sturm-Liouville operator on the triangle. These results are then applied to derive error estimates for the...
متن کاملSobolev-type Error Estimates for Interpolation by Radial Basis Functions
We generalize techniques dating back to Duchon 4] for error estimates for interpolation by thin plate splines to basis functions with positive and algebraically decaying Fourier transform. We include L p-estimates for 1 p < 2 that can also be applied to thin plate spline approximation. x1. Introduction Radial basis functions are a well-established tool for multivariate approximation problems. A...
متن کاملA Posteriori Error Estimates with Point Sources in Fractional Sobolev Spaces
We consider Poisson’s equation with a finite number of weighted Dirac masses as a source term, together with its discretization by means of conforming finite elements. For the error in fractional Sobolev spaces, we propose residual-type a posteriori estimators with a specifically tailored oscillation and show that, on two-dimensional polygonal domains, they are reliable and locally efficient. I...
متن کاملError bounds for GMLS derivatives approximations of Sobolev functions
This paper provides the error estimates for generalized moving least squares (GMLS) derivatives approximations of a Sobolev function in L norms and extends them for local weak forms of DMLPG methods. Sometimes they are called diffuse or uncertain derivatives, but precisely they are direct approximants of exact derivatives which possess the optimal rates of convergence. GMLS derivatives approxim...
متن کاملWavelets with Optimal Sobolev Regularity
Numerical optimization is used to construct new orthonormal compactly supported wavelets with Sobolev regularity exponent as high as possible among those mother wavelets with a fixed support length and a fixed number of vanishing moments. The increased regularity is obtained by optimizing the locations of the roots the scaling filter has on the interval (π/2, π). The results improve those obtai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2019
ISSN: 0025-5718,1088-6842
DOI: 10.1090/mcom/3456