Optimal Planning of Grid Scale PHES Through Characteristics-Based Large Scale Data Clustering and Emission Constrained Optimization
نویسندگان
چکیده
منابع مشابه
An Efficient Data Replication Strategy in Large-Scale Data Grid Environments Based on Availability and Popularity
The data grid technology, which uses the scale of the Internet to solve storage limitation for the huge amount of data, has become one of the hot research topics. Recently, data replication strategies have been widely employed in distributed environment to copy frequently accessed data in suitable sites. The primary purposes are shortening distance of file transmission and achieving files from ...
متن کاملA partition-based algorithm for clustering large-scale software systems
Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...
متن کاملLarge-scale linearly constrained optimization
An algorithm for solving large-scale nonlinear' programs with linear constraints is presented. The method combines efficient sparse-matrix techniques as in the revised simplex method with stable quasi-Newton methods for handling the nonlinearities. A general-purpose production code (MINOS) is described, along with computational experience on a wide variety of problems.
متن کاملCONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM
A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...
متن کاملLarge Scale Correlation Clustering Optimization
Clustering is a fundamental task in unsupervised learning. The focus of this paper is the Correlation Clustering functional which combines positive and negative affinities between the data points. The contribution of this paper is two fold: (i) Provide a theoretic analysis of the functional. (ii) New optimization algorithms which can cope with large scale problems (> 100K variables) that are in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2019
ISSN: 1996-1073
DOI: 10.3390/en12112137